• 제목/요약/키워드: Artificial intelligence technique

검색결과 423건 처리시간 0.029초

천해역 선박 소음 자동 탐지를 위한 인공지능 기법 적용 (Application of the artificial intelligence for automatic detection of shipping noise in shallow-water)

  • 김선효;정섬규;강돈혁;김미라;조성호
    • 한국음향학회지
    • /
    • 제39권4호
    • /
    • pp.279-285
    • /
    • 2020
  • 항행 선박의 시·공간적 모니터링 기술 연구는 연안 해양공간에서 해양 생태계 보호 및 효율적인 관리를 위해서 중요하다. 본 연구에서는 실험해역에서 측정된 선박 소음 특징인 광대역 줄무늬 패턴 자료에 인공지능 기술을 적용하여 항행하는 선박을 자동 탐지하는 연구를 수행하였다. 소음 스펙트럼 이미지와 선박의 항행정보를 수집하기 위한 해상시험은 2016년 7월 15일부터 26일까지 제주 남부 해역에서 실시되었고, 컨볼루션 신경망 모델은 수집된 이미지를 기반으로 학습, 교차검증 과정을 거쳐 최적화되었다. 선박 소음 자동 탐지 기법의 성능은 정밀도(0.936), 재현율(0.830), 평균 정밀도(0.824) 그리고 정확도(0.949)로 평가되었다. 결론적으로 인공지능 기법을 활용하여 선박 소음의 자동 탐지 가능성을 확인하였다. 본 연구의 결과로부터 성능을 향상시킬 수 있는 방안 및 향후 연구에 대하여 제안하였다.

LSTM 기반 멀티스텝 트래픽 예측 기법 평가 (Accessing LSTM-based multi-step traffic prediction methods)

  • 염성웅;김형태;콜레카르 산자이 시바니;김경백
    • KNOM Review
    • /
    • 제24권2호
    • /
    • pp.13-23
    • /
    • 2021
  • 최근 IoT 기기들의 활성화에 의해 네트워크가 복잡해짐에 따라, 네트워크의 혼잡을 예측하고 미리 대비하기 위해 단기 트래픽 예측을 넘어 장기 트래픽 예측 연구가 활성화되고 있다. 단기 트래픽 예측 결과를 입력으로 재사용하는 재귀 전략은 멀티 스텝 트래픽 예측으로 확장되었지만, 재귀 단계가 진행될수록 오류가 축적되어 예측 성능 저하를 일으킨다. 이 논문에서는 다중 출력 전략을 사용한 LSTM 기반 멀티스텝 트래픽 예측 기법을 소개하고그 성능을 평가한다. 실제 DNS 요청 트래픽을 기반으로 실험한 결과, 제안된 LSTM기반 다중출력 전략 기법은 재귀 전략 기법에 비해 비정상성 트래픽에 대한 트래픽 예측 성능의 MAPE를 약 6% 줄일 수 있음을 확인하였다.

Artificial Intelligence (AI)-based Deep Excavation Designed Program

  • Yoo, Chungsik;Aizaz, Haider Syed;Abbas, Qaisar;Yang, Jaewon
    • 한국지반신소재학회논문집
    • /
    • 제17권4호
    • /
    • pp.277-292
    • /
    • 2018
  • This paper presents the development and implementation of an artificial intelligence (AI)-based deep excavation induced wall and ground displacements and wall support member forces prediction program (ANN-EXCAV). The program has been developed in a C# environment by using the well-known AI technique artificial neural network (ANN). Program used ANN to predict the induced displacement, groundwater drawdown and wall and support member forces parameters for deep excavation project and run the stability check by comparing predict values to the calculated allowable values. Generalised ANNs were trained to predict the said parameters through databases generated by numerical analysis for cases that represented real field conditions. A practical example to run the ANN-EXCAV is illustrated in this paper. Results indicate that the program efficiently performed the calculations with a considerable accuracy, so it can be handy and robust tool for preliminary design of wall and support members for deep excavation project.

Prediction of uplift capacity of suction caisson in clay using extreme learning machine

  • Muduli, Pradyut Kumar;Das, Sarat Kumar;Samui, Pijush;Sahoo, Rupashree
    • Ocean Systems Engineering
    • /
    • 제5권1호
    • /
    • pp.41-54
    • /
    • 2015
  • This study presents the development of predictive models for uplift capacity of suction caisson in clay using an artificial intelligence technique, extreme learning machine (ELM). Other artificial intelligence models like artificial neural network (ANN), support vector machine (SVM), relevance vector machine (RVM) models are also developed to compare the ELM model with above models and available numerical models in terms of different statistical criteria. A ranking system is presented to evaluate present models in identifying the 'best' model. Sensitivity analyses are made to identify important inputs contributing to the developed models.

A Novel Approach to COVID-19 Diagnosis Based on Mel Spectrogram Features and Artificial Intelligence Techniques

  • Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.195-207
    • /
    • 2022
  • COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.

Optimum solar energy harvesting system using artificial intelligence

  • Sunardi Sangsang Sasmowiyono;Abdul Fadlil;Arsyad Cahya Subrata
    • ETRI Journal
    • /
    • 제45권6호
    • /
    • pp.996-1006
    • /
    • 2023
  • Renewable energy is promoted massively to overcome problems that fossil fuel power plants generate. One popular renewable energy type that offers easy installation is a photovoltaic (PV) system. However, the energy harvested through a PV system is not optimal because influenced by exposure to solar irradiance in the PV module, which is constantly changing caused by weather. The maximum power point tracking (MPPT) technique was developed to maximize the energy potential harvested from the PV system. This paper presents the MPPT technique, which is operated on a new high-gain voltage DC/DC converter that has never been tested before for the MPPT technique in PV systems. Fuzzy logic (FL) was used to operate the MPPT technique on the converter. Conventional and adaptive perturb and observe (P&O) techniques based on variables step size were also used to operate the MPPT. The performance generated by the FL algorithm outperformed conventional and variable step-size P&O. It is evident that the oscillation caused by the FL algorithm is more petite than variables step-size and conventional P&O. Furthermore, FL's tracking speed algorithm for tracking MPP is twice as fast as conventional P&O.

인공지능형 삼차원 Foot Scanning 시스템에 관한 연구 (A Study on the Intelligent 3D Foot Scanning System)

  • 김영탁;박주원;탁한호;이상배
    • 한국지능시스템학회논문지
    • /
    • 제14권7호
    • /
    • pp.871-877
    • /
    • 2004
  • 본 논문은 맞춤형 신발제작을 위하여 신발에 필요한 화형제작용 데이터를 3차원 측정 장치를 통해 획득한 발의 형상을 인공지능 기법을 기반으로 하는 최적화된 형상을 복원하는 방법을 제시하고자 한다. 본 연구를 위해 개발된 시스템은 PC를 기반으로 하는 기존의 3차원측정 방식을 이용하여 상, 하, 좌, 우로 각각 장착된8대의 CCD 카메라와 4대의 laser를 통해 화형 및 발의 형상 데이터를 획득한다. 획득된 데이터들은 인공지능 기법을 이용한 영상처리 알고리즘으로 처리되며, 처리 결과는 기존의 지능 기법을 도입하지 않은 시스템에 비해 노이즈제거 특성이 향상되었고, 후처리과정을 간소화 할 수 있다. 따라서 본 논문에서는 3차원 측정을 위해 하드웨어적인 부분과 이를 제어하기 위한 소프트웨어 및 GUI로 전체 시스템을 구성하고, 본 논문에서는 데이터 처리용 소프트웨어에서 입력영상의 전처리 과정 중 영상의 이진화 단계에서 임계값을 결정하기 위하여 신경망을 사용하였으며, 이에 대한 결과를 제시하고자 한다.

토픽모델링을 활용한 과학기술동향 및 예측에 관한 연구 (A Study on Science Technology Trend and Prediction Using Topic Modeling)

  • 박주섭;홍순구;김종원
    • 한국산업정보학회논문지
    • /
    • 제22권4호
    • /
    • pp.19-28
    • /
    • 2017
  • 기업이나 정부에서는 연구나 기술 동향을 파악하고 예측하기 위해 주로 델파이 기법이 활용하여 왔다. 이 기법은 많은 시간과 비용이 소요되는 단점이 있기에 본 논문에서는 LDA 토픽모델링 기법을 활용하여 과학기술의 동향 및 예측에 관한 연구를 실시하였다. 이를 위해 미국 특허 문서중 AI(Artificial Intelligence) 초록을 대상으로 LDA 토픽모델링 기법을 활용하여 20개의 AI 세부기술을 추출하였다. 도출된 세부기술에 대해 핵심기술을 파악하고, 연도별 비중 추이 분석을 통하여 Hot기술과 Cold기술을 분류하였다. 텍스트 탐색, 컴퓨터 관리, 프로그래밍 구문, 네트워크 관리, 멀티미디어, 무선 네트워크 기술 등이 Hot 기술로 도출되었다. 이런 기술들은 최근 AI 분야에서 활발하게 연구되는 핵심 기술들이다. 본 논문에서 제시한 방법론은 사회문제나 지역혁신, 경영 등 다양한 분야에서의 동향분석이나 정책 도출 또는 기술 수요 예측에 활용되어 질 수 있을 것이다.

불확실 지상 표적의 인공지능 기반 위협도 평가 연구 (Artificial Intelligence based Threat Assessment Study of Uncertain Ground Targets)

  • 진승현
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.305-313
    • /
    • 2021
  • 미래전의 양상은 네트워크 중심전으로 전체계의 연결을 통한 전장상황 정보획득 및 공유가 주를 이룰 것이다. 따라서 전장에서 생성되는 정보의 양은 많아지지만, 정보를 평가하여 전장을 효율적으로 지휘하는 기술은 부족한 것이 현실태이다. 이를 극복하기 위해 대두되는 기술이 전장 위협평가이다. 전장 위협평가는 획득된 정보를 사용하여 지휘관의 신속 결심을 지원하는 기술이지만 획득된 정보에는 표적의 불확실성이 많고 점차 지능화되는 전장상황에 적용하기에 현재 기술수준이 낮은 부분이 있다. 본 논문에서는 표적의 불확실성을 제거하고 고도화되는 전장상황에서도 적용 가능한 인공지능 기반의 전장 위협평가 기법에 대해 제안한다. 사용된 인공지능 시스템으로는 퍼지 추론 시스템과 다층 퍼셉트론을 사용하였다. 퍼지 추론 시스템에 표적의 고유특성을 입력시켜 표적을 분류해내었고 분류된 표적정보를 다른 표적 변수들과 함께 다층 퍼셉트론에 입력하여 해당 표적에 맞는 위협도 값을 산출하였다. 그 결과, 시뮬레이션을 통해 두 가지 시나리오상에서 무작위로 설정된 불확실 표적들을 인공신경망에 훈련시켰고, 훈련된 인공신경망에 시험용 표적을 입력하여 산출되는 위협도 값으로 제안한 기술의 타당성을 검증하였다.

인공지능과 메타버스 발전에 따른 미래 광고 변화에 관한 연구 (Study on future advertising change according to the development of artificial intelligence and metaverse)

  • 안종배
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.873-879
    • /
    • 2022
  • 미래는 인공지능과 메타버스가 세상을 삼킬 정도로 활용 영역과 영향력이 강력해지고 있다. 광고 분야도 예외가 아니어서 이러한 미래 변화를 예측하고 분석하여 전략화하는 것이 더욱 중요해지고 있다. 인공지능과 메타버스 발전에 따른 광고의 미래 변화 연구를 위해 인공지능과 메타버스 기술 발전과 이에 따른 광고 환경 변화 관련한 문헌연구와 미래 및 광고 전문가를 대상으로 한 심층 인터뷰와 델파이 기법 연구 방법을 통해 광고 변화에 대해 연구하고자 한다. 본 연구를 통해 먼저 포스트코로나 문명대변혁시대에 인공지능과 메타버스 기술 발전과 이에 따른 광고부문의 변화에 대한 전문가의 의견을 심층 인터뷰를 통해 살펴보고자 한다. 그리고 델파이 기법으로 미래광고 기술영역, 미래광고 미디어영역, 미래광고 형태영역, 미래광고 효과영역, 미래광고 적용영역, 미래광고 프로세스영역별로 변화가 어느 정도 중요하며 미래 어느 시점에 주요하게 변화할 것인지를 파악하고 또한 미래광고 형태는 구체적으로 어떻게 변화할 지에 대해 연구하고자 한다. 또한 이를 근거로 광고업계의 대응 방안을 제안하고자 한다.