Abstract
Companies and Governments have Mainly used the Delphi Technique to Understand Research or Technology Trends. Because this Technique has the Disadvantage of Consuming a Large Amount of Time and Money, this Study Attempted to Understand and Predict Science and Technology Trends using the Topic Modeling Technique Latent Dirichlet Allocation (LDA). To this end, 20 Specific Artificial Intelligence (AI) Technologies were Extracted From the Abstracts of the US Patent Documents on AI. With Regard to the Extracted Specific Technologies, Core Technologies were Identified, and then these were Divided into Hot and Cold Technologies though a Trend Analysis on their Annual Proportions. Text/Word Searching, Computer Management, Programming Syntax, Network Administration, Multimedia, and Wireless Network Technology were Derived From Hot Technologies. These Technologies are Key Technologies that are Actively Studied in the Field of AI in Recent Years. The Methodology Suggested in this Study may be used to Analyze Trends, Derive Policies, or Predict Technical Demands in Various Fields such as Social Issues, Regional Innovation, and Management.
기업이나 정부에서는 연구나 기술 동향을 파악하고 예측하기 위해 주로 델파이 기법이 활용하여 왔다. 이 기법은 많은 시간과 비용이 소요되는 단점이 있기에 본 논문에서는 LDA 토픽모델링 기법을 활용하여 과학기술의 동향 및 예측에 관한 연구를 실시하였다. 이를 위해 미국 특허 문서중 AI(Artificial Intelligence) 초록을 대상으로 LDA 토픽모델링 기법을 활용하여 20개의 AI 세부기술을 추출하였다. 도출된 세부기술에 대해 핵심기술을 파악하고, 연도별 비중 추이 분석을 통하여 Hot기술과 Cold기술을 분류하였다. 텍스트 탐색, 컴퓨터 관리, 프로그래밍 구문, 네트워크 관리, 멀티미디어, 무선 네트워크 기술 등이 Hot 기술로 도출되었다. 이런 기술들은 최근 AI 분야에서 활발하게 연구되는 핵심 기술들이다. 본 논문에서 제시한 방법론은 사회문제나 지역혁신, 경영 등 다양한 분야에서의 동향분석이나 정책 도출 또는 기술 수요 예측에 활용되어 질 수 있을 것이다.