• Title/Summary/Keyword: Artificial intelligence in Design

Search Result 717, Processing Time 0.03 seconds

Development of Wire/Wireless Communication Modules using Environmental Sensor Modules for LNG Storage Tanks (LNG 저장탱크용 환경 센서 모듈을 이용한 유무선 통신 모듈 개발)

  • Park, Byong Jin;Kim, Min Sung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Accidents are steadily occurring due to machine defects and carelessness during LNG storage operations. In previous studies, an environmental sensor module capable of measuring pressure, temperature, gas concentration, and flow to detect danger in advance was developed and the response speed according to the amount of leaked gas was measured. This paper proposes the development of a wired and wireless communication module that transmits data measured by the environmental sensor module to embedded devices connected to wired and wireless networks of SPI, UART, and LTE. First, a data communication module capable of interworking with an environmental sensor is designed. Design a protocol between devices in the Local Control Part and wired and wireless protocols in the Local Control Part and Remote Control Part. Ethernet, WiFi, and LTE communication modules were designed, and UART and SPI channels that can be linked with embedded controllers were designed. As a result, it was confirmed through a UI (User Interface) that each embedded device transmits data measured by the environmental sensor module while simultaneously communicating on a wired and wireless basis.

KAB: Knowledge Augmented BERT2BERT Automated Questions-Answering system for Jurisprudential Legal Opinions

  • Alotaibi, Saud S.;Munshi, Amr A.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.346-356
    • /
    • 2022
  • The jurisprudential legal rules govern the way Muslims react and interact to daily life. This creates a huge stream of questions, that require highly qualified and well-educated individuals, called Muftis. With Muslims representing almost 25% of the planet population, and the scarcity of qualified Muftis, this creates a demand supply problem calling for Automation solutions. This motivates the application of Artificial Intelligence (AI) to solve this problem, which requires a well-designed Question-Answering (QA) system to solve it. In this work, we propose a QA system, based on retrieval augmented generative transformer model for jurisprudential legal question. The main idea in the proposed architecture is the leverage of both state-of-the art transformer models, and the existing knowledge base of legal sources and question-answers. With the sensitivity of the domain in mind, due to its importance in Muslims daily lives, our design balances between exploitation of knowledge bases, and exploration provided by the generative transformer models. We collect a custom data set of 850,000 entries, that includes the question, answer, and category of the question. Our evaluation methodology is based on both quantitative and qualitative methods. We use metrics like BERTScore and METEOR to evaluate the precision and recall of the system. We also provide many qualitative results that show the quality of the generated answers, and how relevant they are to the asked questions.

Performance Comparisons of GAN-Based Generative Models for New Product Development (신제품 개발을 위한 GAN 기반 생성모델 성능 비교)

  • Lee, Dong-Hun;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.867-871
    • /
    • 2022
  • Amid the recent rapid trend change, the change in design has a great impact on the sales of fashion companies, so it is inevitable to be careful in choosing new designs. With the recent development of the artificial intelligence field, various machine learning is being used a lot in the fashion market to increase consumers' preferences. To contribute to increasing reliability in the development of new products by quantifying abstract concepts such as preferences, we generate new images that do not exist through three adversarial generative neural networks (GANs) and numerically compare abstract concepts of preferences using pre-trained convolution neural networks (CNNs). Deep convolutional generative adversarial networks (DCGAN), Progressive growing adversarial networks (PGGAN), and Dual Discriminator generative adversarial networks (DANs), which were trained to produce comparative, high-level, and high-level images. The degree of similarity measured was considered as a preference, and the experimental results showed that D2GAN showed a relatively high similarity compared to DCGAN and PGGAN.

Shoe Recommendation System by Measurement of Foot Shape Imag

  • Chang Bae Moon;Byeong Man Kim;Young-Jin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.93-104
    • /
    • 2023
  • In modern society, the service method is tended to prefer the non-face-to-face method rather than the face-to-face method. However, services that recommend products such as shoes will inevitably be face-to-face method. In this paper, for the purpose of non-face-to-face service, a system that a foot size is automatically measured and some shoes are recommended based on the measurement result is proposed. To analyze the performance of the proposed method, size measurement error rate and recommendation performance were analyzed. In the recommendation performance experiments, a total of 10 methods for similarity calculation were used and the recommendation method with the best performance among them was applied to the system. From the experiments, the error rate the foot size was small and the recommendation performance was possible to derive significant results. The proposed method is at the laboratory level and needs to be expanded and applied to the real environment. Also, the recommendation method considering design could be needed in the future work.

Framework Design for Malware Dataset Extraction Using Code Patches in a Hybrid Analysis Environment (코드패치 및 하이브리드 분석 환경을 활용한 악성코드 데이터셋 추출 프레임워크 설계)

  • Ki-Sang Choi;Sang-Hoon Choi;Ki-Woong Park
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.3
    • /
    • pp.403-416
    • /
    • 2024
  • Malware is being commercialized and sold on the black market, primarily driven by financial incentives. With the increasing demand driven by these sales, the scope of attacks via malware has expanded. In response, there has been a surge in research efforts leveraging artificial intelligence for detection and classification. However, adversaries are integrating various anti-analysis techniques into their malware to thwart analytical efforts. In this study, we introduce the "Malware Analysis with Dynamic Extraction (MADE)" framework, a hybrid binary analysis tool devised to procure datasets from advanced malware incorporating Anti-Analysis techniques. The MADE framework has the proficiency to autonomously execute dynamic analysis on binaries, encompassing those laden with Anti-VM and Anti-Debugging defenses. Experimental results substantiate that the MADE framework can effectively circumvent over 90% of diverse malware implementations using Anti-Analysis techniques and can adeptly extract relevant datasets.

Design and Implementation of a Lightweight On-Device AI-Based Real-time Fault Diagnosis System using Continual Learning (연속학습을 활용한 경량 온-디바이스 AI 기반 실시간 기계 결함 진단 시스템 설계 및 구현)

  • Youngjun Kim;Taewan Kim;Suhyun Kim;Seongjae Lee;Taehyoun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.3
    • /
    • pp.151-158
    • /
    • 2024
  • Although on-device artificial intelligence (AI) has gained attention to diagnosing machine faults in real time, most previous studies did not consider the model retraining and redeployment processes that must be performed in real-world industrial environments. Our study addresses this challenge by proposing an on-device AI-based real-time machine fault diagnosis system that utilizes continual learning. Our proposed system includes a lightweight convolutional neural network (CNN) model, a continual learning algorithm, and a real-time monitoring service. First, we developed a lightweight 1D CNN model to reduce the cost of model deployment and enable real-time inference on the target edge device with limited computing resources. We then compared the performance of five continual learning algorithms with three public bearing fault datasets and selected the most effective algorithm for our system. Finally, we implemented a real-time monitoring service using an open-source data visualization framework. In the performance comparison results between continual learning algorithms, we found that the replay-based algorithms outperformed the regularization-based algorithms, and the experience replay (ER) algorithm had the best diagnostic accuracy. We further tuned the number and length of data samples used for a memory buffer of the ER algorithm to maximize its performance. We confirmed that the performance of the ER algorithm becomes higher when a longer data length is used. Consequently, the proposed system showed an accuracy of 98.7%, while only 16.5% of the previous data was stored in memory buffer. Our lightweight CNN model was also able to diagnose a fault type of one data sample within 3.76 ms on the Raspberry Pi 4B device.

Cascade Fusion-Based Multi-Scale Enhancement of Thermal Image (캐스케이드 융합 기반 다중 스케일 열화상 향상 기법)

  • Kyung-Jae Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.301-307
    • /
    • 2024
  • This study introduces a novel cascade fusion architecture aimed at enhancing thermal images across various scale conditions. The processing of thermal images at multiple scales has been challenging due to the limitations of existing methods that are designed for specific scales. To overcome these limitations, this paper proposes a unified framework that utilizes cascade feature fusion to effectively learn multi-scale representations. Confidence maps from different image scales are fused in a cascaded manner, enabling scale-invariant learning. The architecture comprises end-to-end trained convolutional neural networks to enhance image quality by reinforcing mutual scale dependencies. Experimental results indicate that the proposed technique outperforms existing methods in multi-scale thermal image enhancement. Performance evaluation results are provided, demonstrating consistent improvements in image quality metrics. The cascade fusion design facilitates robust generalization across scales and efficient learning of cross-scale representations.

A Study on Correction and Prevention System of Real-time Forward Head Posture (실시간 거북목 증후군 자세 교정 및 예방 시스템 연구)

  • Woo-Seok Choi;Ji-Mi Choi;Hyun-Min Cho;Jeong-Min Park;Kwang-in Kwak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.147-156
    • /
    • 2024
  • This paper introduces the design of a turtle neck posture correction and prevention system for users of digital devices for a long time. The number of forward head posture patients in Korea increased by 13% from 2018 to 2021, and has not yet improved according to the latest statistics at the present time. Because of the nature of the disease, prevention is more important than treatment. Therefore, in this paper, we designed a system based on built-camera in most laptops to increase the accessiblility of the system, and utilize the features such as Pose Estimation, Face Landmarks Detection, Iris Tracking, and Depth Estimation of Google Mediapipe to prevent the need to produce artificial intelligence models and allow users to easily prevent forward head posture.

Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection (설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형)

  • Gundoo Moon;Kyoung-jae Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.241-265
    • /
    • 2023
  • A corporate insolvency prediction model serves as a vital tool for objectively monitoring the financial condition of companies. It enables timely warnings, facilitates responsive actions, and supports the formulation of effective management strategies to mitigate bankruptcy risks and enhance performance. Investors and financial institutions utilize default prediction models to minimize financial losses. As the interest in utilizing artificial intelligence (AI) technology for corporate insolvency prediction grows, extensive research has been conducted in this domain. However, there is an increasing demand for explainable AI models in corporate insolvency prediction, emphasizing interpretability and reliability. The SHAP (SHapley Additive exPlanations) technique has gained significant popularity and has demonstrated strong performance in various applications. Nonetheless, it has limitations such as computational cost, processing time, and scalability concerns based on the number of variables. This study introduces a novel approach to variable selection that reduces the number of variables by averaging SHAP values from bootstrapped data subsets instead of using the entire dataset. This technique aims to improve computational efficiency while maintaining excellent predictive performance. To obtain classification results, we aim to train random forest, XGBoost, and C5.0 models using carefully selected variables with high interpretability. The classification accuracy of the ensemble model, generated through soft voting as the goal of high-performance model design, is compared with the individual models. The study leverages data from 1,698 Korean light industrial companies and employs bootstrapping to create distinct data groups. Logistic Regression is employed to calculate SHAP values for each data group, and their averages are computed to derive the final SHAP values. The proposed model enhances interpretability and aims to achieve superior predictive performance.

A Study on the Selection Model of Retaining Wall Methods Using Support Vector Machines (Support Vector Machine을 이용한 흙막이공법 선정모델에 관한 연구)

  • Kim, Jae-Yeob;Park, U-Yeol
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.2 s.30
    • /
    • pp.118-126
    • /
    • 2006
  • There is a greater importance for underground work designed and built in the urban areas when it comes to considering the cost-effectiveness and the period of construction commensurate with an increasing trend of skyscrapers. At this stage of underground work, it's extremely necessary to choose a proper earth retaining method. Therefore, the study has suggested the rational retaining wall method by developing the support vector machine(SVM) model as a tool to choose a proper retaining wall method applied at the stage of selecting the earth retaining method. In order to develop the SVM model, the binary SVM classifier is expanded into a multi-class classifier. and to present the feasibility of our SVM model, we considered 129 projects. Applying the 'SVM Model' developed in the study to the designing and developing stages of the earth retaining work will contribute to the successful outcomes by decreasing any changes of design from implementing the earth retaining.