• Title/Summary/Keyword: Artificial intelligence Semiconductor

Search Result 73, Processing Time 0.023 seconds

A Study on the Analysis of Contamination and Establishment of Cleaning Standards for Automobile Rear Camera for AI Learning (AI 학습을 위한 자동차 후방 카메라 오염도 분석 및 세척 기준 설정 연구)

  • Ji-Whan Lee;Ji-Hye Song;Mee-Suk Jung
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.6
    • /
    • pp.299-305
    • /
    • 2024
  • In order to establish operation guidelines for an automated cleaning system using artificial intelligence (AI) learning, this paper analyzes the changes in illuminance caused by contaminants such as scattering dust and transmissive water droplets, based on their size and position. The proposed framework aims to provide an effective cleaning system for rear cameras in autonomous vehicles to contribute to enhanced safety and driving efficiency.

Performance Comparison of Deep Learning Model Loss Function for Scaffold Defect Detection (인공지지체 불량 검출을 위한 딥러닝 모델 손실 함수의 성능 비교)

  • Song Yeon Lee;Yong Jeong Huh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.40-44
    • /
    • 2023
  • The defect detection based on deep learning requires minimal loss and high accuracy to pinpoint product defects. In this paper, we confirm the loss rate of deep learning training based on disc-shaped artificial scaffold images. It is intended to compare the performance of Cross-Entropy functions used in object detection algorithms. The model was constructed using normal, defective artificial scaffold images and category cross entropy and sparse category cross entropy. The data was repeatedly learned five times using each loss function. The average loss rate, average accuracy, final loss rate, and final accuracy according to the loss function were confirmed.

  • PDF

Comparison of Code Similarity Analysis Performance of funcGNN and Siamese Network (funcGNN과 Siamese Network의 코드 유사성 분석 성능비교)

  • Choi, Dong-Bin;Jo, In-su;Park, Young B.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.113-116
    • /
    • 2021
  • As artificial intelligence technologies, including deep learning, develop, these technologies are being introduced to code similarity analysis. In the traditional analysis method of calculating the graph edit distance (GED) after converting the source code into a control flow graph (CFG), there are studies that calculate the GED through a trained graph neural network (GNN) with the converted CFG, Methods for analyzing code similarity through CNN by imaging CFG are also being studied. In this paper, to determine which approach will be effective and efficient in researching code similarity analysis methods using artificial intelligence in the future, code similarity is measured through funcGNN, which measures code similarity using GNN, and Siamese Network, which is an image similarity analysis model. The accuracy was compared and analyzed. As a result of the analysis, the error rate (0.0458) of the Siamese network was bigger than that of the funcGNN (0.0362).

An Efficient Cloud Service Quality Performance Management Method Using a Time Series Framework (시계열 프레임워크를 이용한 효율적인 클라우드서비스 품질·성능 관리 방법)

  • Jung, Hyun Chul;Seo, Kwang-Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.121-125
    • /
    • 2021
  • Cloud service has the characteristic that it must be always available and that it must be able to respond immediately to user requests. This study suggests a method for constructing a proactive and autonomous quality and performance management system to meet these characteristics of cloud services. To this end, we identify quantitative measurement factors for cloud service quality and performance management, define a structure for applying a time series framework to cloud service application quality and performance management for proactive management, and then use big data and artificial intelligence for autonomous management. The flow of data processing and the configuration and flow of big data and artificial intelligence platforms were defined to combine intelligent technologies. In addition, the effectiveness was confirmed by applying it to the cloud service quality and performance management system through a case study. Using the methodology presented in this study, it is possible to improve the service management system that has been managed artificially and retrospectively through various convergence. However, since it requires the collection, processing, and processing of various types of data, it also has limitations in that data standardization must be prioritized in each technology and industry.

The Intelligence Algorithm of Semiconductor Package Evaluation by using Scanning Acoustic Tomograph (Scanning Acoustic Tomograph 방식을 이용한 지능형 반도체 평가 알고리즘)

  • Kim J. Y.;Kim C. H.;Song K. S.;Yang D. J.;Jhang J. H.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.91-96
    • /
    • 2005
  • In this study, researchers developed the estimative algorithm for artificial defects in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-Organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages: Crack, Delamination and Normal. According to the results, we were confirmed that estimative algorithm was provided the recognition rates of $75.7\%$ (for Crack) and $83_4\%$ (for Delamination) and $87.2\%$ (for Normal).

  • PDF

A Study of AI model extraction attack and defense techniques (AI 모델 탈취 공격 및 방어 기법들에 관한 연구)

  • Jun, So-Hee;Lee, Young-Han;Kim, Hyun-Jun;Paek, Yun-Heung
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.382-384
    • /
    • 2021
  • AI (Artificial Intelligence)기술이 상용화되면서 최근 기업들은 AI 모델의 기능을 서비스화하여 제공하고 있다. 하지만 최근 이러한 서비스를 이용하여 기업이 자본을 투자해 학습시킨 AI 모델을 탈취하는 공격이 등장하여 위협이 되고 있다. 본 논문은 최근 연구되고 있는 이러한 모델 탈취 공격들에 대해 공격자의 정보를 기준으로 분류하여 서술한다. 또한 본 논문에서는 모델 탈취 공격에 대응하기 위해 다양한 관점에서 시도되는 방어 기법들에 대해 서술한다.

A Study on the Application of Artificial Intelligence in Symbolic Execution: Usage in fuzzing and vulnerability detection (기호 실행에서의 인공 지능 적용에 대한 연구: 퍼징과 취약점 탐지에서의 활용)

  • Ha, Whoi Ree;Ahn, Sunwoo;Kim, Hyunjun;Paek, Yunheung
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.582-584
    • /
    • 2020
  • 기호 실행 (symbolic execution)은 프로그램을 특정 상태로 구동하는 입력 값을 찾는 코드 분석기법이다. 이를 사용하면 자동화 소프트웨어 테스트 기법인 퍼징 (fuzzing)을 훨씬 효율적으로 사용하여 더 많은 보안 취약점을 찾을 수 있지만, 기호 실행의 한계점으로 인하여 쉽게 적용할 수 없었다. 이를 해결하기 위해 인공 지능을 활용한 방법을 소개하겠다.

Topic Modeling on Patent and Article Big Data Using BERTopic and Analyzing Technological Trends of AI Semiconductor Industry (BERTopic을 활용한 텍스트마이닝 기반 인공지능 반도체 기술 및 연구동향 분석)

  • Hyeonkyeong Kim;Junghoon Lee;Sunku Kang
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.139-161
    • /
    • 2024
  • The Fourth Industrial Revolution has spurred widespread adoption of AI-based services, driving global interest in AI semiconductors for efficient large-scale computation. Text mining research, historically using LDA, has evolved with machine learning integration, exemplified by the 2021 BERTopic technology. This study employs BERTopic to analyze AI semiconductor-related patents and research data, generating 48 topics from 2,256 patents and 40 topics from 1,112 publications. While providing valuable insights into technology trends, the study acknowledges limitations in taking a macro approach to the entire AI semiconductor industry. Future research may explore specific technologies for more nuanced insights as the industry matures.

Research on Semiconductor Technology Roadmap by the Institute of Semiconductor Engineers (반도체공학회의 반도체 기술 발전 로드맵 연구 )

  • Hyunchol Shin;Ilku Nam;Jun-Mo Yang;Byung-Wook Min;Kyuho Lee;Chiweon Yoon;Jean Ho Song
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.19-26
    • /
    • 2024
  • Semiconductors are considered as one of the essential technologies in modern electronic devices and systems. Thus, it is required to predict and propose the semiconductor technology development roadmap. This study describes the key semiconductor technology issues, research and development trends, and their future roadmap, in the four areas such as the semiconductor device More-Moore integration technology, system-specific application processor technology, artificial intelligence/machine learning (AI/ML) processor technology, and outside system connectivity via optical and wireless communication.

Performance Advancement of Evaluation Algorithm for Inner Defects in Semiconductor Packages (반도체 패키지 내부결함 평가 알고리즘의 성능 향상)

  • Kim, Chang-Hyun;Hong, Sung-Hun;Kim, Jae-Yeol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.82-87
    • /
    • 2006
  • Availability of defect test algorithm that recognizes exact and standardized defect information in order to fundamentally resolve generated defects in industrial sites by giving artificial intelligence to SAT(Scanning Acoustic Tomograph), which previously depended on operator's decision, to find various defect information in a semiconductor package, to decide defect pattern, to reduce personal errors and then to standardize the test process was verified. In order to apply the algorithm to the lately emerging Neural Network theory, various weights were used to derive results for performance advancement plans of the defect test algorithm that promises excellent field applicability.