• Title/Summary/Keyword: Artificial ground

Search Result 776, Processing Time 0.028 seconds

A study on the development of tunnel soundness evaluation system using artificial neural network (인공신경망을 이용한 터널 건전도 평가시스템 개발)

  • 김현우;김영근;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.48-55
    • /
    • 1999
  • One of the major roles of concrete lining is the supplementary support of ground load. Therefore, if there are cracks or deformation found in the lining, the causes should be carefully examined. Tunnel Soundness Evaluation System (DW-TSES) was developed to meet such requirements. Main facility of the system was intended to find the probable causes on the basis of the apparent changes in lining and the environmental conditions. It also includes facilities for evaluating the soundness of a tunnel and indicating the method for repair or reinforcement. The characteristic feature of damages is used for reasoning in case of deterioration and leakage, and artificial neural network is used in external pressure. This process depends on the results of the case analyses and FDM, which have a collection of the typical features of different types of damages as well as the unusual changes caused by the external pressure. The comparison of the outputs of this system with those of expert's diagnoses draws the following conclusions. 1) Artificial neural network was a suitable tool to find to causes of damages by external pressure. 2) The environmental conditions improved the accuracy in reasoning. 3) The result of finding causes and evaluating soundness was helpful to suggest effective methods concerning tunnel maintenance.

  • PDF

Estimation of Countermeasures and Efficient Use of Volume of Artificial Reefs Deployed in Fishing Grounds (어초어장으로 시설된 사각형어초의 수량 산정 및 유효공용적 평가)

  • Kim, Ho-Sang;Lee, Jeong-Woo;Kim, Jong-Ryeol;Yoon, Han-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.181-187
    • /
    • 2009
  • To estimate the status and volume of artificial reefs(ARs) deployed at the sea bottom in fishing grounds, this study assessed the initial volume of ARs, the cubic volume of AR groups, and the porosity of each AR using image data collected during a survey using a multi-beam echo sounder(MBES) and a side scan sonar(SSS). These results were compared with data collected during diver surveys and used to develop a new method and prediction formulas for countermeasures, facility volume, and efficient use of volume for deployed ARs(cubic concrete). The field survey results for nine ARs deployed in the Busan Sea region were calculated, and the average value of coefficient k(indicating the efficient use of volume ratio) among ARs was 0.753, and the correlation between coefficient k and year(Yr) of deployment was calculated as k=0.0023Yr+0.725. The relationship between these two factors was poor. In years following the deployment of artificial reefs, coefficient k and year of deployment were not correlated, in spite of the hardening ground due to subsidence and the reduced distance between ARs. Consequently, it is reasonable to suppose that coefficient k was defined by bottom surface conditions and initial deployment conditions.

  • PDF

Detection of Artificial Displacement of a Reflector by using GB-SAR Interferometry and Atmospheric Humidity Correction (GB-SAR 간섭기법을 이용한 반사체의 인위적 변위탐지 및 대기습도보정)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hun;Kim, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.123-131
    • /
    • 2010
  • In this paper we applied Ground-Based Synthetic Aperture Radar(GB-SAR) interferometry to detect artificial displacement of a reflector and performed an atmospheric humidity correction to improve the accuracy. A series of GB-SAR images were obtained using a center frequency of 5.3 GHz with a range resolution of 25 cm and a azimuth resolution of $0.324^{\circ}$, all in full-polarization (HH, VV, VH, HV) modes. A triangular trihedral corner reflector was located 160 m away from the system, and the artificial displacements of 0-40 mm was implemented during the GB-SAR image acquisition. The result showed that the RMS error between the actual and measured displacements, averaged in all polarization data, was 1.22 mm, while the maximum error in case of the 40 mm displacement was 2.72 mm at HH-polarization. After the atmospheric correction with respect to the humidity, the RMS error was reduced to 0.52 mm. We conclude that a GB-SAR system can be used to monitor the possible displacement of artificial/natural scatterers and the stability assessment with sub-millimeter accuracy.

A Study on the Application Method of Artificial Injection Test according to the Hydraulic Conductivity of Aquifer (대수층 수리지질특성에 따른 인공함양시험 적용 방법에 관한 연구)

  • Chae, Dong-Seok;Choi, Jin-O;Jeong, Hyeon-Cheol;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.589-601
    • /
    • 2021
  • Artificial recharge technology is a method for solving problems such as groundwater level drop and ground subsidence caused by groundwater withdrawal. This study investigated the applicability of using the hydraulic conductivity of an aquifer to predict injection test results for aquifer restoration. Pumping and injection tests were performed under the same conditions as those for the artificial injection facility located in Icheon, Gyeonggi-do. The hydraulic conductivity of the aquifer, which plays a decisive role in restoring the groundwater level, was derived from the pumping test. A numerical model of a simplified on-site aquifer was constructed, and a transient analysis was applied with the same conditions as the pumping test. The correlation between the measured and the resulting model values is strong (R2 = 0.78). The injection test was performed in a sedimentary layer composed of silt sand and clay sand. From the results of the injection test, an empirical formula was derived using Theim's formula, which is a common well analysis solution to determine the parameters of the aquifer from time-level data. The model values from the empirical formula have a high degree of correlation (R2 = 0.99) with measured values. Under specific conditions, for areas where it is difficult to conduct an injection test, the formula from this study, which relies on the hydraulic conductivity of the aquifer determined through the pumping test, may be used to predict reliable injection rates for groundwater restoration.

MARGINAL MICROLEAKAGE AND SHEAR BOND STRENGTH OF COMPOSITE RESIN ACCORDING TO TREATMENT METHODS OF ARTIFICIAL SALIVA-CONTAMINATED SURFACE AFTER PRIMING (접착강화제 도포후 인공타액에 오염된 표면의 처리방법에 따른 복합레진의 번연누출과 전단결합강도)

  • Cho, Young-Gon;Ko, Kee-Jong;Lee, Suk-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2000
  • During bonding procedure of composite resin, the prepared cavity can be contaminated by saliva. In this study, marginal microleakage and shear bond strength of a composite resin to primed enamel and dentin treated with artificial saliva(Taliva$^{(R)}$) were evaluated. For the marginal microleakage test, Class V cavities were prepared in the buccal surfaces of fifty molars. The samples were randomly assigned into 5 groups with 10 samples in each group. Control group was applied with a bonding system (Scotchbond$^{TM}$ Multi-Purpose plus) according to manufacture's directions without saliva contamination. Experimental groups were divided into 4 groups and contaminated with artificial saliva for 30 seconds after priming: Experimental 1 group ; artificial saliva was dried with compressed air only, Experimental 2 group ; artificial saliva was rinsed and dried. Experimental 3 group ; cavities were etched with 35% phosphoric acid for 15 seconds after rinsing and drying artificial saliva. Experimental 4 group ; cavities were etched with 35% phosphoric acid for 15 seconds and primer was reapplied after rinsing and drying artificial saliva. All the cavities were applied a bonding agent and filled with a composite resin (Z-100$^{TM}$). Specimens were immersed in 0.5% basic fuschin dye for 24 hours and embedded in transparent acrylic resin and sectioned buccolingually with diamond wheel saw. Four sections were obtained from one specimen. Degree of marginal leakage was scored under stereomicroscope and their scores were averaged from four sections. The data were analyzed by Kruscal-Wallis test and Fisher's LSD. For the shear bond strength test, the buccal or occlusal surfaces of one hundred molar teeth were ground to expose enamel(n=50) or dentin(n=50) using diamond wheel saw and its surface was smoothed with Lapping and Polishing Machine(South Bay Technology Co., U.S.A.). Samples were divided into 5 groups. Treatment of saliva-contaminated enamel and dentin surfaces was same as the marginal microleakage test and composite resin was bonded via a gelatin capsule. All specimens were stored in distilled water for 48 hours. The shear bond strengths were measured by universal testing machine (AGS-1000 4D, Shimaduzu Co., Japan) with a crosshead speed of 5 mm/minute. Failure mode of fracture sites was examined under stereomicroscope. The data were analyzed by ANOVA and Tukey's studentized range test. The results of this study were as follows : 1. Enamel marginal microleakage showed no significant difference among groups. 2. Dentinal marginal microleakages of control, experimental 2 and 4 groups were lower than those of experimental 1 and 3 groups (p<0.05). 3. The shear bond strength to enamel was the highest value in control group (20.03${\pm}$4.47MPa) and the lowest value in experimental 1 group (13.28${\pm}$6.52MPa). There were significant differences between experimental 1 group and other groups (p<0.05). 4. The shear bond strength to dentin was higher in control group (17.87${\pm}$4.02MPa) and experimental 4 group (16.38${\pm}$3.23MPa) than in other groups, its value was low in experimental 1 group (3.95${\pm}$2.51 MPa) and experimental 2 group (6.72${\pm}$2.26MPa)(p<0.05). 5. Failure mode of fractured site on the enamel showed mostly adhesive failures in experimental 1 and 3 groups. 6. Failure mode of fractured site on the dentin did not show adhesive failures in control group, but showed mostly adhesive failure in experimental groups. As a summary of above results, if the primed tooth surface was contaminated with artificial saliva, primer should be reapplied after re-etching it.

  • PDF

Characteristics of Shear Strength and Elastic Waves in Artificially Frozen Specimens using Triaxial Compression Tests (삼축압축실험을 이용한 인공동결시료의 강도평가 및 탄성파 특성변화)

  • Kim, JongChan;Lee, Jong-Sub;Hong, Seung-Seo;Lee, Changho
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.

Fragility Analysis Method Based on Seismic Performance of Bridge Structure considering Earthquake Frequencies (지진 진동수에 따른 교량의 내진성능기반 취약도 해석 방법)

  • Lee, Dae-Hyoung;Chung, Young-Soo;Yang, Dong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.187-197
    • /
    • 2009
  • This paper presents a systematic approach for estimating fragility curves and damage probability matrices for different frequencies. Fragility curves and damage probability indicate the probabilities that a structure will sustain different degrees of damage at different ground motion levels. The seismic damages are to achieved by probabilistic evaluation because of uncertainty of earthquakes. In contrast to previous approaches, this paper presents a method that is based on nonlinear dynamic analysis of the structure using empirical data. This paper presents the probability of damage as a function of peak ground acceleration and estimates the probability of five damage levels for prestressed concrete (PSC) bridge pier subjected to given ground acceleration. At each level, 100 artificial earthquake motions were generated in terms of soil conditions, and nonlinear time domain analyses was performed for the damage states of PSC bridge pier structures. These damage states are described by displacement ductility resulting from seismic performance based on existing research results. Using the damage states and ground motion parameters, five fragility curves for PSC bridge pier with five types of dominant frequencies were constructed assuming a log-normal distribution. The effect of dominant frequences was found to be significant on fragility curves.

Dynamic Numerical Modeling of Subsea Railway Tunnel Based on Geotechnical Conditions and Seismic Waves (지반조건과 지진파를 고려한 해저철도 터널의 동적 수치 모델링)

  • Kwak, Chang-Won;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.69-86
    • /
    • 2022
  • The railway is widely used to transport passengers and freight due to its punctuality and large transport capacity. The recent remarkable development in construction technology enables various subsea railway tunnels for continent-continent or continent-island connectivity. In Korea, design and construction experience is primarily based on the successful completion of the Boryeong subsea tunnel (2021) and the Gadeok subsea tunnel (2010). However, frequent earthquakes with diverse magnitudes, globally induced and continuously increased the awareness of seismic risks and the frequency of domestic earthquakes. The effect of an earthquake on the subsea tunnel is very complicated. However, ground conditions and seismic waves are considered the main factors. This study simulated four ground types of 3-dimensional numerical models, such as soil, rock, composite, and fractured zone, to analyze the effect of ground type and seismic wave. A virtual subsea railway shield tunnel considering external water pressure was modeled. Further, three different seismic waves with long-term, short-term, and both periods were studied. The dynamic analyses by finite difference method were performed to investigate the displacement and stress characteristics. Consequently, the long-term period wave exhibited a predominant lateral displacement response in soil and the short-term period wave in rock. The artificial wave, which had both periodic characteristics, demonstrated predominant in the fractured zone. The effect of an earthquake is more noticeable in the stress of the tunnel segment than in displacement because of confining effect of ground and structural elements in the shield tunnel. 

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.

A Study on the Settlement Prediction of Soft Ground Embankment Using Artificial Neural Network (인공신경망을 이용한 연약지반성토의 침하예측 연구)

  • Kim, Dong-Sik;Chae, Young-Su;Kim, Young-Su;Kim, Hyun-Dong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.17-25
    • /
    • 2007
  • Various geotechnical problems due to insufficient bearing capacity or excessive settlement are likely to occur when constructing roads or large complexes on soft ground. Accurate predictions of the magnitude of settlement and the consolidation time provide numerous options of ground improvement methods and, thus, enable to save time and expense of the whole project. Asaoka's method is probably the most frequently used one for settlement prediction and the empirical formulae such as Hyperbolic method and Hoshino's method are also often used. To find an elaborate method of predicting the embankment settlement, two recurrent type neural network models, such as Jordan model and Elman-Jordan model, are adopted. The data sets of settlement measured at several domestic sites are analyzed to obtain the most suitable model structures. It was shown from the comparison between predicted and measured settlements that Jordan model provides better predictions than Elman-Jordan model does and that the predictions using CPT results are more accurate than those using SPT results. It is believed that RNN using cone penetration test results can be a highly efficient tool in predicting settlements if enough field data can be obtained.