• 제목/요약/키워드: Artificial earthquake

검색결과 285건 처리시간 0.03초

원추형 마찰진자베어링의 내진성능평가 (Seismic Performance Evaluation of a Cone-type Friction Pendulum Bearing System)

  • 전법규;장성진;박경록;김남식;정득영
    • 한국지진공학회논문집
    • /
    • 제15권2호
    • /
    • pp.23-33
    • /
    • 2011
  • 본 연구에서는 중요 통신장비의 지진발생시 파손 및 성능저하를 방지하기 위하여 구조물로 전달되는 가속도를 조절할 수 있는 CFPBS(Cone-type Friction Pendulum Bearing System:원추형 마찰진자베어링)를 개발하고 내진성능을 검증하였다. CFPBS는 기존의 FPS(Friction Pendulum System)와 다르게 원추형으로 제작되었으며 보다 큰 마찰력을 얻기 위하여 마찰면에 패턴을 음각하였다. CFPBS의 고유성능을 파악하기 위하여 4개의 CFPBS가 하나의 개체를 이루도록 제작된 지진격리장치를 이용하여 자유진동시험을 수행하였다. 운동방정식으로부터 유도된 CFPBS의 이론식과 Newmark-${\beta}$ Method를 이용하여 내진성능을 검증하기위한 MATLAB7.0 기반의 동적 수치해석프로그램을 제작하였으며 CFPBS의 제작 시 원하는 성능을 발휘할 수 있도록 간략화된 CFPBS의 설계식을 제안하였다. 수치해석을 통한 CFPBS의 내진성능평가를 위하여 건축구조설계기준(KBC-2005)의 최대지진규모에 해당하는 인공지진파를 생성하고 검증하였다. El Centro NS(1940)와 Kobe NS(1995), 인공지진파 등을 사용하여 CFPBS의 상부질량과 경사각을 매개변수로 하는 수치해석을 수행하였다. 수치해석의 결과를 토대로 CFPBS의 내진성능을 평가하였으며 수치해석의 결과와 설계식을 이용하여 동일한 조건에서 얻어진 결과를 비교분석하였다.

점지진원 모델을 이용한 경주 지진으로 인한 지반운동 생성 (Simulation of Ground Motions from Gyeongju Earthquake using Point Source Model)

  • 하성진;지현우;한상환
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.537-543
    • /
    • 2016
  • In low to moderate seismic regions, there are limited earthquake ground motion data recorded from past earthquakes. In this regard, the Gyeongju earthquake (M=5.8)occurred on September 12, 2016 produces valuable information on ground motions. Ground motions were recorded at various recording stations located widely in Korean peninsula. Without actual recoded ground motions, it is impossible to make a ground motion prediction model. In this study, a point source model is constructed to accurately simulate ground motions recorded at different stations located on different soil conditions during the Gyeongju earthquake. Using the model, ground motions are generated at all grid locations of Korean peninsula. Each grid size has $0.1^{\circ}(latitude){\times}0.1^{\circ}(longitude)$. Then a contour hazard map is constructed using the peak ground acceleration of the simulated ground motions.

Non-linear dynamic assessment of low-rise RC building model under sequential ground motions

  • Haider, Syed Muhammad Bilal;Nizamani, Zafarullah;Yip, Chun Chieh
    • Structural Engineering and Mechanics
    • /
    • 제74권6호
    • /
    • pp.789-807
    • /
    • 2020
  • Multiple earthquakes that occur during short seismic intervals affect the inelastic behavior of the structures. Sequential ground motions against the single earthquake event cause the building structure to face loss in stiffness and its strength. Although, numerous research studies had been conducted in this research area but still significant limitations exist such as: 1) use of traditional design procedure which usually considers single seismic excitation; 2) selecting a seismic excitation data based on earthquake events occurred at another place and time. Therefore, it is important to study the effects of successive ground motions on the framed structures. The objective of this study is to overcome the aforementioned limitations through testing a two storey RC building structural model scaled down to 1/10 ratio through a similitude relation. The scaled model is examined using a shaking table. Thereafter, the experimental model results are validated with simulated results using ETABS software. The test framed specimen is subjected to sequential five artificial and four real-time earthquake motions. Dynamic response history analysis has been conducted to investigate the i) observed response and crack pattern; ii) maximum displacement; iii) residual displacement; iv) Interstorey drift ratio and damage limitation. The results of the study conclude that the low-rise building model has ability to resist successive artificial ground motion from its strength. Sequential artificial ground motions cause the framed structure to displace each storey twice in correlation with vary first artificial seismic vibration. The displacement parameters showed that real-time successive ground motions have a limited impact on the low-rise reinforced concrete model. The finding shows that traditional seismic design EC8 requires to reconsider the traditional design procedure.

지진진동수에 따른 콘크리트 중력댐의 내진성능에 대한 해석적 사례연구 (Numerical Study on Earthquake Performance of Gravity Dam Considering Earthquake Frequencies)

  • 채영석;민인기
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.64-74
    • /
    • 2016
  • Recently, the seismic stability evaluation of concrete gravity dams is raised due to the failure of dams occurred by the Izmit, Turkey and JiJi, Taiwan earthquake in 1999. Dams failure may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about "earthquake - resistance" or "seismic safety" of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic stability of concrete gravity dams on the basis of the evaluation method of seismic stability of concrete gravity dams in U.S.A., Japan, Canada, and etc. Level 1 is a preliminary evaluation which is for purpose of screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. And level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dams on operation showed good seismic performance under designed artificial earthquake(KHC earthquake).

LRB 면진장치를 적용한 원전구조물의 지진응답에 따른 확률론적 연구 (A Probabilistic Study on Seismic Response of Seismically Isolated Nuclear Power Plant Structures using Lead Rubber Bearing)

  • 김현정;송종걸;문지호
    • 한국지진공학회논문집
    • /
    • 제22권2호
    • /
    • pp.45-54
    • /
    • 2018
  • The seismically isolated nuclear power plants shall be designed for design basis earthquake (DBE) and considered to ensure safety against beyond design basis earthquake (BDBE). In order to limit the excessive displacement of the seismic isolation system of the seismically isolated structure, the moat is installed at a certain distance from the upper mat supporting the superstructure. This certain distance is called clearance to stop (CS) and is calculated from the 90th percentile displacement of seismic isolation system subjected to BDBE. For design purposes, the CS can be obtained simply by multiplying the median displacement of the seismic isolation system against DBE by scale factor with a value of 3. The DBE and BDBE used in this study were generated by using 30 sets of artificial earthquakes corresponding to the nuclear standard design spectrum. In addition, latin hyper cube sampling was applied to generate 30 sets of artificial earthquakes corresponding to maximum - minimum spectra. For the DBE, the median displacement and the 99th percentile displacement of the seismic isolation system were calculated. For the BDBE, the suitability of the scale factor was assessed after calculating the 90th percentile displacement of the seismic isolation system.

RMS 가속도에 의한 인공 지진파 생성기법 (Generation of RMS Hazard-Compatible Artificial Earthquake Ground Motions)

  • 김진만
    • 한국지진공학회논문집
    • /
    • 제7권1호
    • /
    • pp.31-40
    • /
    • 2003
  • 지진응답 해석 시 불확실한 지진현상을 추정하여 설계지진파를 선정하는 것은 어려운 일 중의 하나이다. 게다가 제한된 숫자의 설계인자에 상응하는 지진파가 결코 유일하지 않다는 문제도 있다. 따라서 동일한 설계진도에 상응하는 여러 지진파들로부터 구한 응답치들이 서로 크게 차이가 날 수 있다. 본 논문은 이 같은 지진하중의 불확실성을 체계적으로 고려하는 실용적인 지진파 생성 기법을 제시한다. 이 기법은 에너지 개념의 RMS 지진가속도에 기반하며 주요 지진파 설계인자의 불확실성을 고려한다. 시뮬레이션을 통해, 이 새로운 RMS 기법이 지진재해에 상응하는 지진파를 대량 생성하는 경우에 적합하며 따라서 소량의 지진파 생성에 적합한 기존의 방법들과 비교할 때 특히 확률론적 지진응답 해석 시 유용하다는 점을 확인하였다.

Simulation method of ground motion matching for multiple targets and effects of fitting parameter variation on the distribution of PGD

  • Wang, Shaoqing;Yu, Ruifang;Li, Xiaojun;Lv, Hongshan
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.563-573
    • /
    • 2019
  • When generating spectrum-compatible artificial ground motion in engineering practices, the effect of the variation in fitting parameters on the distribution of the peak ground displacement (PGD) has not yet drawn enough attention. In this study, a method for simulating ground motion matching for multiple targets is developed. In this method, a frequency-dependent amplitude envelope function with statistical parameters is introduced to simulate the nonstationarity of the frequency in earthquake ground motion. Then, several groups of time-history acceleration with different temporal and spectral nonstationarities were generated to analyze the effect of nonstationary parameter variations on the distribution of PGD. The following conclusions are drawn from the results: (1) In the simulation of spectrum-compatible artificial ground motion, if the acceleration time-history is generated with random initial phases, the corresponding PGD distribution is quite discrete and an uncertain number of PGD values lower than the limit value are observed. Nevertheless, the mean values of PGD always meet the requirement in every group. (2) If the nonstationary frequencies of the ground motion are taken into account when fitting the target spectrum, the corresponding PGD values will increase. A correlation analysis shows that the change in the mean and the dispersion values, from before the frequencies are controlled to after, correlates with the modal parameters of the predominant frequencies. (3) Extending the maximum period of the target spectrum will increase the corresponding PGD value and, simultaneously, decrease the PGD dispersion. Finally, in order to control the PGD effectively, the ground motion simulation method suggested in this study was revised to target a specified PGD. This novel method can generate ground motion that satisfies not only the required precision of the target spectrum, peak ground acceleration (PGA), and nonstationarity characteristics of the ground motion but also meets the required limit of the PGD, improving engineering practices.

지진 응답 스펙트럼과 설계용 응답 스펙트럼 생성을 위한 신경망 모델의 개발 (Development of Neural-Networks-based Model for the Generation of an Earthquake Response Spectrum and a Design Spectrum)

  • 조빈아;이승창;한상환;이병해
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.447-454
    • /
    • 1998
  • The paper describes the second half of the research for the development of Neural-Networks-based model for the generation of an Artificial earthquake and a Response Spectrum(NNARS). Based on the redefined traditional processes related to the generation of an earthquake acceleration response spectrum and design spectrum, four neural-networks-based models are proposed to substitute the traditional processes. RS_NN tries to directly generate acceleration response spectrum with basic data that are magnitude, epicentral distance, site conditions and focal depth. The test results of RS_NN are not good because of the characteristics of white noise, which is randomly generated. ARS_NN solve this problem by the introduction of the average concept. IARS_NN has a role to inverse the ARS_NN, so that is applied to generate a ground motion accelerogram compatible with the shape of a response spectrum. Additionally, DS_NN directly produces design spectrum with basic data. As these four neural networks are simulated as a step by step, the paper describes the methods to generate a response spectrum and a design spectrum using the neural networks.

  • PDF

지진으로 인한 사면변위 해석 시 지반성질 모델의 중요성 (The Importance of Geotechnical Variability in the Analysis of Earthquake-induced Slope Deformations)

  • Kim, Jin-Man
    • 한국지반공학회논문집
    • /
    • 제19권2호
    • /
    • pp.123-133
    • /
    • 2003
  • 사면안정 신뢰성 해석을 통해 다양한 불확실성을 체계적으로 모델링할 수 있는 실용적 인 확률통계 기법을 제시한다. 새로운 제안식은, 지반성질의 확률적 특성화를 위해 공간적 변화와 공간평균으로 인한 분산감소뿐만 아니라 통계 및 측정오차까지도 고려하였다. 지진하중의 불확실성은 인공지진파를 대량으로 생성하고 이를 응답해석에 이용함으로써 반영하였다. 예제 해석결과, 한반도와 같이 지진이 활발하지 않은 지역(중약진 지진대)에서는 일반적 수준의지반성질 변화특성화가 지진위험도 특성화만큼이나 사면 파괴 위험도와 과도한 사면변형 계산값에 영향을 준다는 결론에 도달하였다.

Pre-earthquake fuzzy logic and neural network based rapid visual screening of buildings

  • Moseley, V.J.;Dritsos, S.E.;Kolaksis, D.L.
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.77-97
    • /
    • 2007
  • When assessing buildings that may collapse during a large earthquake, conventional rapid visual screening procedures generally provide good results when identifying buildings for further investigation. Unfortunately, their accuracy at identify buildings at risk is not so good. In addition, there appears to be little room for improvement. This paper investigates an alternative screening procedure based on fuzzy logic and artificial neural networks. Two databases of buildings damaged during the Athens earthquake of 1999 are used for training purposes. Extremely good results are obtained from one database and not so good results are obtained from the second database. This finding illustrates the importance of specifically collecting data tailored to the requirements of the fuzzy logic based rapid visual screening procedure. In general, results demonstrate that the trained fuzzy logic based rapid visual screening procedure represents a marked improvement when identifying buildings at risk. In particular, when smaller percentages of the buildings with high damage scores are extracted for further investigation, the proposed fuzzy screening procedure becomes more efficient. This paper shows that the proposed procedure has a significant optimisation potential, is worth pursuing and, to this end, a strategy that outlines the future development of the fuzzy logic based rapid visual screening procedure is proposed.