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The Importance of Geotechnical Variability in the Analysis of
Earthquake-induced Slope Deformations
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Abstract

A practical statistical approach that can be used to model various sources of uncertainty systematically is presented
in the context of reliability analysis of slope stability. New expressions for probabilistic characterization of soil properties
incorporate sampling and measurement errors, as well as spatial variability and its reduced variance due to spatial
averaging. The stochastic nature of seismic loading is studied by generating a large series of hazard-compatible artificial
motions, and by using them in subsequent response analyses. The analyses indicate that in a seismically less active
region such as the Korean Peninsular, a moderate variability in soil properties has an effect as large as the characterization

of earthquake hazard on the computed risk of slope failure and excessive slope deformations.

Keywords : Artificial ground motion, Earthquake, Probabilistic analysis, Slope deformation, Spatial variability

1. Introduction

The analysis of seismically induced permanent defor-
mations of slopes involves two basic sources of uncertainty.
One source of uncertainty is due to the natural variability
of material properties and the uncertainty arising from
measurement error and sampling uncertainty. The other
major source of uncertainty is the seismic loading itself.
Most previous approaches, however, have focused either

on material uncertainty or on uncertainty of seismic

loading (e.g., Constantinou et al. 1984, Yegian et al.
1991). Thus, it has been difficult to judge the overall
impact of uncertainties on the problem, and also their
relative significance.

In this paper, we present a practical probabilistic
approach that can systematically model various sources
of uncertainty found in the assessment of seismically
induced permanent deformations of slopes. The stochastic
nature of spatially varying material properties and also

the uncertainty arising from insufficient information are
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treated as a random field. The stochastic nature of seismic
loading is approached by generating a large series of
hazard-compatible artificial motions, and by using them
in subsequent response analyses. This approach incorporates
probabilistic concepts into the classical limit equilibrium
and the Newmark-type (Newmark 1965) deformation
techniques. The risk of damage is then computed by
reliability-based computational techniques inciuding the
Monte Carlo simulation.

The applicability of the proposed approach is illustrated
with example seismic slope stability analyses. The results
are then interpreted to examine the overall impact of
uncertainties on the problem and also their relative

significance in seismic slope stability.

2. Spatial Variability

It is well recognized that soil properties vary spatially
as a result of depositional and post-depositional processes
that cause variation in properties such as mineral compo-
sition, moisture content, stress history, and shear strength,
etc. In addition, there are a number of other factors,
including insufficient sampling and measurement errors,
which make it difficult to determine soil properties
precisely. In practice, measurements are taken at selected
locations and the soil properties, except at the sampling
points, are not certain and therefore, may be considered
as random quantities. These spatial variations of soil
properties can be effectively described by their correlation
structure within the framework of random fields (Vanmarcke
1983).

2.1 Statistics of Spatial Averages

Although the continuous variation of the random field
is describable, it is seldom useful or necessary to describe
in detail the local point-to-point variation. For example,
in slope stability analysis we are interested in the statistics
of the local average of the material property along the
slip surface, since soils generally exhibit plastic behavior
and the stability of a soil slope tends to be controlled
by the averaged soil strength rather than the soil strength
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at a particular location along the slip surface. The
averaging domain can be a portion of space where a test
has been carried out, or a slice of soil mass over which an
average property of the material is sought. For the sake of
simplicity we will first consider that the data is error free.

The spatially weighted average v of a random property
v(x) over the element Q, can be defined as the stochastic

integral:

_ 1
U=7£}Ev(x)dx ; V=j;)£dx ; XEQ, )
where dx is an elementary volume, area or line element
in the three-, two- and one-dimensional cases, respectively.

The covariance of the spatial average v between the

element domains @, and Q. can then be manipulated
in terms of the statistics of point random property »(x)
as (Vanmarcke 1983):

cov[T,T'] = E{T - E@)][0'-E@")]}
1 1 1 1
= Wﬁz,ﬁze'a(x)o(x )p(x,X") dxdx (2)
where the random property can be described with trend

o(x)= 1 () € (x).
If the field is second moment (weakly) stationary field,

and random components :

a(x) o(x’) and the correlation coefficient p(x, x") can be
replaced by ¢% and o(r) respectively, where r is a lag
distance vector between the x and x’: r=
(xy—x1",%3— %", ...,%x,—x, ). Then the covariance of

the spatial average can further be simplified as:

cov[o,v']=0" y(Q,,Q,") 3

where 7(2,2,)=—- [ [ p(r)ddx

In the above formulations, y(2,,2,) may be called
the covariance reduction factor. It should be noted that
the reduction factor is dependent only on the correlation
function and geometry of the domain of interest and
independent of the magnitude of the point variance. The
reduction factor is bounded by 0 to 1 since the correlation
coefficient is always given equal to or less than unity.

Therefore, the variability of local average is always less



than that of the point value and further decreases as the

size of the averaged domain increases.

2.2 Observation—based Spatial Averages

Uncertainty in the determination of soil properties
comes from various sources. One obvious source of
uncertainty is the inherent randomness of the natural
phenomena (e.g., spatial variation). Other sources of
uncertainty include the inaccuracies in the estimation of
the parameters and in the choice of the distribution
representing the randomness, due to limited observational
data, and errors (including random errors and bias)
incurred in taking the measurements. Following derivations
are based on homogeneous random field. We begin with
the unconditional approach that does not account for the
location of measurements,

Suppose that (x) has been observed at N points (or
areas) inside and/or around the homogeneous zone of
interest, Each observation »} may be associated with a
true value v; and a measurement error ;. The measure-
ment bias can be modeled by introducing the bias factor
B, with mean and variance being denoted as p and ¢%

respectively (e.g., Tang 1984, Baecher 1984) :
v, =By, +e; i=12,...N 4)

As the true soil properties are unknown, statistics of
the soil properties are estimated based on the measured
values. Let us assume, for the moment, that the observa-
tions are made at sufficiently large distance from each
other (statistically independent), e¢; has zero mean, a
standard deviation ¢,, and lacks autocorrelation and is
orthogonal to »* and v (i.e., the measurement errors are
independent each other and independent of observed
data). Unbiased sample moments may be used as point

estimates of the corresponding moments of population :

1 (Bu, +e] (5)

u=pn N £

The above estimates, however, do not convey information

on the degree of accuracy of those estimates of parameters,

which depends mainly on the number of the observations.
The observational data »; can be conceived to be
imperfect realizations of a set of independent sample
random variables V;; i=1,2,..., N among the population
and then the sample mean 7 can be regarded as a random

variable, given as:
1 N
i=—Y[BV +e
f= g DIBY vel] ©)
Its mean value is then given as:

1 .
E[u]=NZ[E(B,V,.)+E(ei)]= ‘N%=u (7)

B
N
and its variance is:

var[ji] = var[%g(BJ/,-‘ + e,.)}

pio? +u’ol +0i0™ +0?
= N ®)

When there is no bias ( zz=1 and ¢%=0), the sample
mean  has a standard deviation (or error) (" + a.)/V N.

Now, first two moments of spatial average can be
estimated based on the observational data, taking account
of not only point estimates but also degree of accuracy
of those estimations.

The expected value of the spatial average can be

evaluated by replacing » with sample mean 7 as:
_ 1 N .
B[] - E[; [, () de SE[a+e@)=p (9

Similarly, the covariance between two spatial averages
is given (Kim 2001):

. . .
w0 +u’cl +0i0” + o}
N

cov[v,v'] = +oy(Q,,Q,") (10)

The first term in the above solution (Equation 10)
represents sampling and measurement errors (i.e., uncer-
tainties in the estimation of the sample mean) while the
second term is the reduced variance due to the spatial

average. Figure 1 shows the comparison of magnitude of
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Fig. 1. Comparison of the uncertainty magnitudes between the
spatial variation (inherent uncertainty) and sampling error
(statistical uncertainty); N is the number of tests, L is the
sale of averaging, and ¢ is the sale of fluctuation

uncertainty between the spatial variation and sampling
error. Unlike the inherent uncertainty, errors from the
insufficient data and imperfect measurement do not
decrease by averaging over the area of space, but depend
on the number of samples. In the special case of var( %)=0,
which happens when N-—»co, the above solution (Equation
10) becomes identical with Equation 3.

Tang (1984) reported a relationship which is similar
to Equation 10. His formula, however, is based on the
first order approximation of various sources of uncertainties
that are factored and therefore may not be applicable to
a problem with sources of large uncertainty (Kim and
Sitar in review). Li and White (1987) reported similar
relationships to Equation 10, although their formulas do
not include the measurement error and bias terms as
presented herein.

An important and highly desirable characteristic of a
random field simulation is that the random field simulation
reproduces the observed values at their respective sampling
locations. Conditional simulation, or ordinary kriging (OK),
has this very desirable property and it has been extensively
used in many different applications, particularly mineral
exploration (see e.g. Krige 1966, Journel 1989).

When prior estimate of the mean value of a property
is not available, as is usually the case in most field
exploration problems, a linear estimator may be expressed
in a weighted linear combination of the observed values

in the form:
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N N
ﬁa=ﬁ(xa)=2wajvj =2wuj(ij;+ej) an
J= J=

Requirements that the estimator be unbiased and the
expected value of its squared error be minimal yield the

following conditions for weights w,;:

w, =1 (12)

N
EWW»U‘jk—Aa=O"ak; k=1...,N (13)
£

where A, is a Lagrange multiplier and the asterisk (*)
is used to emphasize the fact that the covariance is
obtained by including the effects of measurement errors
and bias, if any. The above two equations are a system
of N+1 linear equations with N unknowns w,; and A,.
The covariance between two values 7, and o, is then

given by:
~ A N *
Ooxm = El@, v, )0, -v,)]=0, - 2 WaOyu +4, (14)
alternatively,
~ A N *
Ooxm = El(U, -V, )0, -v,)]=0,, - Z Wy Oy, + 4, (15)

The second term in the above expression (Equation
14) represents the reduction in the covariance of the
estimator from the ensemble (or point) variance as a
result of spatial correlation. If all the observations points
and the point to be estimated are separated far enough
(0,=0; 0;=0 for i+ j,) the estimate may equal to
the arithmetic mean, and the ordinary kriging covariance

may reduce to:

OOK,ab zo—ab +A’a zozy(Qa’Qb)

2 _*2 *2 2 2 %2 2
LHeO 0, 40,07 0,
N

(16)

* __ ~ 2 *2 *2 .2
, because w, 05=w, var [v]l= w(pB6™+ p 0%+

040"+ 02 = Ay w,,]-x—}v from Equations 12 and 13.



It should be noted that uncertainties arising from the
sampling and measurement errors are implicitly included
in Equation 14, because the mean value needs to be
estimated based on observations. Also, Equation 16 is
identical to Equation 10 (based on the unconditional

evaluation) as they should be.

3. Temporal Variability

In general, ground motions that correspond to a limited
number of design parameters are not unique. Consequently,
a broad range of responses can be obtained even with
a set of motions that match the same target parameters.
There have been, in general, three main methods for
generation of artificial ground motion: (1) modification
of recorded ground motions (e.g., Lilhanand and Tseng
1988); (2) generation of genuine artificial motion in terms
of stochastic processes (e.g., Gasparini and Vanmarcke
1976); and (3) generation of artificial motion using
Green’s function techniques (e.g., Hartzell 1978).

Majority of the procedures developed for generating
earthquake ground motions as random (or stochastic)
processes are either based on ARMA models (e.g.,
Shamaras et al. 1985) or spectral representation (e.g.,
Housner and Jennings 1964). Spectral representation of
ground motion with the power spectral density (PSD)
function, in general, provides both clear interpretation and
computational efficiency. It can also easily incorporate
the non-stationarity of the intensity and frequency content.

A periodic function can be expressed by series of
sinusoidal motions and, especially, the zero-mean process

can be represented as (Rice 1954):

X(@) = 2,/2G(wi)Aa) sin(w,? +0,) a7n

where we adopts the widely quoted form for the PSD
function G(w) that is based on Kanai (1957) and Tajimi
(1960)'s studies. Each different array of phase angles can
be modeled by statistically independent random phase
angles #;, which are uniformly distributed between 0 and

2 . The above formula defines an infinite ensemble of

time histories with the same frequency content but with
randomly distributed phase angles between the individual
components. Sample earthquake motion can then be
obtained by directly transforming them into the time
domain by FFT (Fast Fourier Transform, Cooley and
Tukey 1965).

Transient character of the intensity content of the
earthquake motion can be added by multiplying the
stationary motion by a deterministic modulating (envelope)

function m(f). The non-stationary motion ¥(¢) then becomes

Y()=m()X(t) = m(t)i,/ZG (w)Awsin(w;t+6,) (18)

In their liquefaction-related analytical approaches,
Wang and Kavazanjian (1987) proposed a trigonometric
modulating function that has two model parameters to
define the shape of the modulating function, defined as:

m(t) = sin (z(¢/1,)" ) (19)

where ¢ and B are two parameters to determine the
shape of the modulating function and ¢, is the duration
of motion. Unlike the conventional models, this model
provides a convenient way in developing the statistics of
shape parameters since it is in a normalized form and
can thus be used independent of the intensity and the
duration of the ground motion.

There are different methods for characterizing the
temporal variation of the spectral content of earthquake
motion. Simple, yet efficient, approach is to divide the
ground motion into several sections small enough so that
stationarity of the frequency content within each section
can be assumed without much error (Saragoni and Hart
1974).

3.1 Relationship between the Modulating Func—
tion and RMS Hazard

One of the energy-based parameters is the RMS (Root
Mean Square) acceleration, which is defined as (Housner
1975):
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where a(7) is acceleration time history, #, is initial

time of interest, 7, is duration of the strong ground
shaking, and E(T,) is a total energy for the duration
T, Similarly, temporal RMS can be defined by replacing

T, with a small time interval A¢ as:

1+AL 172

RMS,_(t) = [i faz(r)dr] for At -0 2n

We can define the nonmalized PSD by dividing the

PSD with its variance as:
* 1
G (w)= ?G(w) (22)

When the stationary process X*(#) is a normalized
process with unit variance and PSD function G*(w),
equation 18 (non-stationary ground motion) can be
rewritten in terms of the normalized PSD function and

modulating function m(7) as:

Y(O)=m(OX (1) = m(t)i XIZGt(co,.)Aa) sin(w? +6,) (23)

It is fairly straightforward to relate time-variant RMS

to the deterministic modulating function m(p) as follows:
RMS:(0) = EP* @ |- m@E|x "0 |=m*y (24

The time-variant RMS of the motion ¥(# can thus be

— Non-stationay Motion
e Modulating function

(RMS=0.29,2=0.73,8=0.22)

Acceleration (g}

0 5 10 15 20 25 30 35
Time (sec)

Fig. 2. Sample time history of non-stationary ground motion
{AMS=0.2 g9, =073, 8=0.22, 13=30 sec)
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identical to the modulating function »:(#). In other words,
if the normalized power spectral functions are given,
non-stationary ground motion can be obtained by a
product of the temporal-variant RMS (or time dependent
standard deviation) and normalized stationary process of
PSD G'(w).

Figure 2 shows sample earthquake motion generated

by using the aforementioned procedures.

4. Limit State Function and Probability of
Failure

Conceptually, the performance of a structure can be
described by a limit state function (also often called
performance function) g(x) so that failure is defined
whenever the condition of g(x)<0 is satisfied, where x
is the vector of model variables (Figure 3). The pro-
bability of failure is then given by:

py=Pe(x)s0)= [rf(x)dx 25)

g(x)=0

where f(x) is the joint probability density function (PDF)
of x.

Once the limit state function g(x) and the distribution
Ax) are selected, the probability of failure p, can be
estimated by computing the volume of the joint distribu-
tion f{x) within the failure domain defined by g(x)<0.
During the last four decades, a number of computational

methods have been developed to solve efficiently the

Limit State Surface
alx)=0

lcontour of equal fix)

Jx) \

glx)>0, Safe Zone

\ X,

Fig. 3. Limit-state and probability density functions

gix)<0, Unsafe Zone




problem. These include the mean-value first order second
moment (MVFOSM or often simply FOSM) (Cornell
1969) and the first- and second-order reliability methods
(FORM and SORM) (Madsen et al. 1986). A variety of
other computation methods, including simulation methods
(Rubinstein 1981) and response surface methods (Faravelli
1989) are also available.

A limit-state function representing the slope deformation
under the stochastic seismic loadings is not sufficiently
smooth to be differentiable (Kim 2001). When the limit-
state functions are not differentiable, those methods (e.g.,
FOSM, FORM, and SORM) that require the computation
of derivatives or gradients of the limit state functions
cannot be used, and Monte Carlo simulations provide the

alternative.

5. Example Analyses

The purpose of example analyses is to illustrate the
influence of various assumptions on the estimated soil
propetties, earthquake motions, and the resulting proba-
bilities of failure. We are interested in evaluating the risk
of failure of a cohesive slope shown in Figure 4. Three
vertical borings are carried out and 10 soil samples are
taken at the specific locations shown in Figure 4.
Subsequent tests yield a sample mean ¢ =45 &N/m? and
a sample standard deviation s,= 13.5 &N/m? for undrained
shear strength, and »=18 &N/m® and s,=0.9 kN/m®
for soil density. Previous experience with local geology
indicates that the soil can be modeled as a homogeneous
random field and the scales of fluctuation may be
assumed as §,=5m and §,= 1m respectively. A separable
2-D exponential autocorrelation function is employed to
model the correlation. In addition to the shear strengths,
we assume that the shear wave velocity measured at the

site ranges from 150 to 250 m/sec. The failure surface

B3
m 10
9
[
7 N ZsY
a1 sample location 5 10m

Fig. 4. Geometry and sample Iocation of a slope with a circular
slip surface

is considered to be deterministic as it may be in post-
failure analyses, although this is simply a convenience
and not requirement of our method of solution. The
potential sliding mass is divided into 40 vertical soil slices
of equal width for subsequent static stability and seismic
deformation analyses using Newmark-type deformation
techniques (Newmark 1965). Deterministic analyses of
the static slope stability, with the mean soil properties,
yielded a factor of safety 1.52. Analyses with more
adverse soil properties ( #— ¢ for the shear strengths and
¢+ o for soil density) resulted in a factor of safety 1.02.

For the purpose of seismic analyses, the site is assumed
to be in Berkeley, California, in the seismically active
San Francisco Bay Area. The Hayward fault that is the
closest major fault to the site of interest is considered.
The computed RMS hazards are de-aggregated into
several intervals of intensity, magnitude, and distance. In
order to generate RMS-compatible ground motion, we
need to specify the frequency content and duration in
addition to the RMS acceleration. We adopt the stochastic
ground motion parameters, which were suggested by Wang
and Kavazanjian (1987) and updated by Tung et al.
(1992). Tables 1 and 2 summarize stochastic ground
motion parameters selected in this study. Another strong
ground motion parameter, which is important in the
nonlinear deformation analyses, is duration. The hazard

compatible duration can be assigned to each generated

Table 1. Power spectral density parameters for rock sites (from Tung et al. 1992)

o Segment 1 Segment 2 Segment 3
Parameter Distribution
M o3 “ c K o
w, Gamma 23.57 3.46 21.12 3.60 18.38 3.50
&y Gamma 0.352 0.360 0.394 0.380 0.417 0.162
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Table 2. Parameters for modulating function {from Wang and
Kavazanjian 1987)

Parameter Distribution u o]
a Rayleigh 0.73 0.45
4] Exponential 0.22 0.18

Table 3. Significant Duration (5-95 % RMS Duration), estimated
based on the empirical relationship reported by Abrahamson
and Silva (1996)

Magnitude Distance Significant Duration
(kilometers) {seconds)
0-10 3.80
10-20 4.53
5.0-6.0 20-30 6.00
30-50 8.20
50100 13.33
0-10 9.05
10-20 9.78
6.0-7.0 20-30 11.25
30-50 13.45
50-100 18.58
0-10 17.34
10-20 18.08
7.0-7.5 20-30 19.54
30-50 21.74
50-100 26.87
0-10 26.76
10-20 27.49
7.5-8.0 20-30 28.96
30-50 31.16
50-100 36.29

ground motion by means of de-aggregation of total hazard
into appropriate intervals of earthquake magnitude and
distance to site. Table 3 shows the significant duration
(5-95 % Arias duration or 5-95 % RMS duration), which
is estimated using the empirical relationship proposed by
Abrahamson and Silva (1996).

The slope is assumed to be able to tolerate up to 200
mm of permanent displacement. The limit state function

(as explained previously in chapter 4) is thus defined as:
2(X) =200 - d(X)

where d is the permanent deformation of the slope subject
to a hazard compatible ground motion. Simulation-based
(Monte Carlo) reliability analyses are performed by
generating a series of hazard compatible outcrop rock
motions, and by using them directly in subsequent slope

deformation analyses. In addition to the motions, the
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Fig. 5. Simulation of average undrained shear strengths

slice-based random soil properties are also generated
(Figure 5), and are used as input values to compute the
yield acceleration. The numerical implementation and
data flow of the probabilistic approach are illustrated in
Figure 6.

The computations were carried out with the soil
properties modeled with various approaches including

conditional (Kriging), unconditional and deterministic

Deformation Analysis

(NEWMARK)

deformofky \
Ky

Statistical Analysis

Seismic Response | HEA()
(SHAKE 91) ——
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'flnput Motion data
{ (GENMOTION) | "=

Yield Acceleration
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Seismic Hazard Analysis Probabaility of Failure ‘
(HAZ20A) | (CUTPUT) |

=i Data flow

Fig. 6. Numerical implementation and data flow of probabilistic
seismic slope deformation analysis
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Fig. 7

methods in order to examine the influence of different
soil property characterizations on the risk level of the
problem. Figure 7 shows the computed seismic hazards
(often called hazard curve), the probabilities of failure
given the certain hazard levels (often called fragility
curve), and the annual probability of exceeding 200 mm
displacement (often called risk curve) for five different
characterizations of soil properties. The seismic hazards
are same for the five cases. The difference is the level
of uncertainty in soil property determination. The

deterministic soil properties represent the lowest level of

uncertainty in the property determination, the conditional
and unconditional (with sampling error) the highest level
of uncertainty, and the unconditional case (spatial variation
only) in between these levels. It is interesting to observe
that differences in the probabilities of failure for the
different cases are significant at the lower level of hazard
(< 0.1 g) and gradually decrease with increasing hazard
level, being negligible at the higher level (> 0.2 g) except
for the case of the mean minus one standard deviation.
The case of deterministic mean soil properties provides
the lower bound of the risk and the mean minus standard
deviation yields the upper bound. Note that the difference
between the unconditional (spatial variation only) and the
deterministic mean is minimal. That is because of
significant variance reduction due to spatial averaging.
However, the risk level significantly increases once the
sampling error is included. For relatively small correlation

lengths ( §,=5m and §,= 1m), the difference between

the conditional and unconditional (with sampling error)
approaches is minimal. Increasing correlation (i.e.,
increasing §) yielded a similar trend, but the risk level
for the unconditional approaches become higher due to
small variance reduction. Additional computation with
increased allowable displacement showed essentially the
same trends as the original allowable displacement (d =
200 mm), except the risk of failure is lower, as would
be expected. Analyses with a high landfill slope yield
comparable results (Kim 2001). Thus, the uncertainty of
soil properties can have a significant impact on the
computed risk of slope failure at relatively low levels of
seismic hazard, but it may have a little impact on the
computed risk if the slope is exposed to relatively high
levels of hazard. In this particular problem, the uncertainty
of soil properties arising from the spatial variation and
sampling errors has much impact on the reliability of the

slope for the RMS hazard level lower than 0.2 g.

6. Conclusions

The results of analyses show that the variability of the
local average is always less than that of the point value

and that it decreases with the increase of the size of the
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average domain.

Unlike the inherent uncertainty, errors from the
insufficient data and imperfect measurement do not
decrease by averaging over the area or space, but depend
only on the number of samples. In this context, increasing
the sub-domain size is only locally effective in variance
reduction and the effect of the total cumulative variance
reduction on the risk of the slope failure is the same
regardless of the sub-domain size.

The results of analyses show that the conditional
approach takes full advantage of the available data and
it leads to a more complete understanding of the degree
of risk.

Finally, one of the most important findings in this study
is that the uncertainty of soil properties can have a
significant impact on the computed risk of failure for a
slope with spatially correlated soil properties exposed to
relatively low levels of seismic hazard (RMS < 0.1~0.2
g), but it may have a little impact on the computed risk
if the slope is exposed to relatively high levels of hazard
(RMS > 0.1~0.2 g). Thus, the results suggest that in a
seismically less active region the like Korean Peninsular,
a moderate variability in soil properties has an effect as
large as the characterization of earthquake hazard on the
computed risk of slope failure and the risk of excessive

slope deformations.
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