• Title/Summary/Keyword: Artificial contamination

Search Result 127, Processing Time 0.047 seconds

Sediment Toxicity of Industrialized Coastal Areas of Korea Using Bioluminescent Marine Bacteria

  • Choi, Min-Kyu;Kim, Seong-Gil;Yoon, Sang-Pil;Jung, Rae-Hong;Moon, Hyo-Bang;Yu, Jun;Choi, Hee-Gu
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.3
    • /
    • pp.244-253
    • /
    • 2010
  • The quality of marine sediments from the industrialized coastal areas of Korea (Ulsan Bay, Masan Bay, and artificial Lake Shihwa) was investigated using a bacterial bioluminescence toxicity test. Sediment toxicity results were compared with the levels of chemical contamination (trace metals, organic wastewater markers, acid volatile sulfides, total organic carbon). Effective concentration 50% (EC50) of sediments ranged from 0.014 to 1.126 mg/mL, which is comparable to or lower than values in contaminated lakes, rivers, and marine sediments of other countries. Sediment reference index (SRI) ranged from 13 to 1044, based on the EC50 of the negative control sample. Mean average SRI values in Masan Bay and Lake Shihwa were approximately 8 and 9 times as high as that in Ulsan Bay, indicating higher sediment toxicity and greater contamination in the two former regions. Sediment toxicity were strongly associated with the concentrations of some chemicals, suggesting that this test may be useful for determining potential chemical contamination in sediments.

A Study on the change of Ecological Environment in Cave cause by the Pollution of Cave Environment and Analysis of Environmental Pollutants in Cave (환경오염으로 인한 동굴생태환경의 변화와 환경오염물질 분석에 관한 연구)

  • 이경호
    • Journal of the Speleological Society of Korea
    • /
    • no.61
    • /
    • pp.5-16
    • /
    • 2000
  • Recently many environmental researcher are concerned about the ecological environment and the issue of environmental pollution in cave. In this paper we discuss about air pollution, water pollution, state of water quality, ecological environment and situation of environmental public damage in cave The concerning of air pollution in cave is mainly to the type of secondary contamination, which much is developed in various fields recently. The natural water in the most of cave is no problems but ground water has slitting with natural water during much raining period. The state of water quality is gradually contaminated with artificial environmental pollution, that is, the contents of kinds of Aluminum, Nickel, Copper, Zinc and Calcium are higher than before. On the other hand it is very important things to keep the control of constant temperature, darkness and humidity in cave. The contamination by lamp flora and even black colored contamination are appeared nowadays. The ecological environment in cave destructed by growing of mi coorganism. In fact the internal of cave is shielded with the state of climate of cave external but the environment of internal cave is contaminated, because blowing from external climate state. In addition to environmental pollution caused by carbon dioxide and body temperature of tourists. By the way eco-examination of cave is black color public damage, green color one and white color one has been discovered, so we need to have the situation of demand of environmental reservation alternatives.

  • PDF

In-situ Process Monitoring Data from 30-Paired Oxide-Nitride Dielectric Stack Deposition for 3D-NAND Memory Fabrication

  • Min Ho Kim;Hyun Ken Park;Sang Jeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.53-58
    • /
    • 2023
  • The storage capacity of 3D-NAND flash memory has been enhanced by the multi-layer dielectrics. The deposition process has become more challenging due to the tight process margin and the demand for accurate process control. To reduce product costs and ensure successful processes, process diagnosis techniques incorporating artificial intelligence (AI) have been adopted in semiconductor manufacturing. Recently there is a growing interest in process diagnosis, and numerous studies have been conducted in this field. For higher model accuracy, various process and sensor data are required, such as optical emission spectroscopy (OES), quadrupole mass spectrometer (QMS), and equipment control state. Among them, OES is usually used for plasma diagnostic. However, OES data can be distorted by viewport contamination, leading to misunderstandings in plasma diagnosis. This issue is particularly emphasized in multi-dielectric deposition processes, such as oxide and nitride (ON) stack. Thus, it is crucial to understand the potential misunderstandings related to OES data distortion due to viewport contamination. This paper explores the potential for misunderstanding OES data due to data distortion in the ON stack process. It suggests the possibility of excessively evaluating process drift through comparisons with a QMS. This understanding can be utilized to develop diagnostic models and identify the effects of viewport contamination in ON stack processes.

  • PDF

Construction of the evaluating facilities against contamination characteristic for power installation (전력설비에 대한 내오손특성 평가설비 구축)

  • Lee, J.G.;Kim, M.K.;Jeong, J.Y.;Kim, I.S.;Moon, I.W.;Kang, Y.S.;Sung, M.J.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1851-1853
    • /
    • 2004
  • The important consideration in laboratory designing and construction of the artificial pollution testing facilities including 300kV, 1800kVA AC test system, which enable to test and evaluate the UHV dielectric performance of power insulators up to transmission class, has been dealt in this paper. To evaluate the performance characteristics against contamination for various power installation, especially for the insulators and kinds of bushings, brief investigation and an analysis of test objects and related international codes and standards have been conducted. With the special consideration concerning other matters in designing of these testing facilities have been described with the fixed ratings and references.

  • PDF

Comparison of hydrochemical informations of groundwater obtained from two different underground storage systems

  • Lee, Jeonghoon;Kim, Jun-Mo;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.110-113
    • /
    • 2002
  • Statistical- based, principal component analysis (PCA) was applied to chemical data from two underground storage systems containing LPG to assess the usefulness of such technique at the initial stage (Pyeongtaek) or middle stage (Ulsan) of hydrochemical studies. For the first case, both natural and anthropogenic contamination characterize regional groundwater. Saline water buffered by Namyang lake affects as a natural factor, whereas cement grouting influence as an artificial factor. For the second study area, contaminations due to operation of LPG caverns, such as disinfection activity and cement grouting effect, deteriorate groundwater quality. This study indicates that principal component analysis would be particularly useful for summarizing large data set for the purpose of subsurface characterization, assessing their vulnerability to contamination and protecting recharge zones.

  • PDF

Effects of Added Silicone Oils on the Surface Hydrophobicity of Silicone Rubber (실리콘 고무의 소수성에 미치는 첨가된 실리콘 오일의 영향)

  • Han Dong-Hee;Cho Han-Goo;Kang Dong-Pll;Min Kyung-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • This paper reports on the effects of silicone oils, used as processing agents, on the recovery of hydrophobicity of silicone rubber. The recovery of hydrophobicity was evaluated by the measuring the contact angle, the surface electrical resistance and SEM. Here, we formed artificial contamination on the surface of samples, which scratched by sand papers and alumina powders. There was small recovery of hydrophobicity on the surface of SIR-A that silicone oil was not added. In both oil-added samples, SIR-B and SIR-C, recovery of hydrophobicity was achieved greatly. The surface of SIR-C showed that a lot of silicone oil was observed due to migration of oil, relatively in comparison with SIR-B. The tendency of recovery of hydrophobicity expressed by contact angle was in a good agreement with electrical property as determined by surface resistivity.

Biodegradation of Hydrocarbon Contamination by Immobilized Bacterial Cells

  • Rahman Raja Noor Zaliha Abd.;Ghazali Farinazleen Mohamad;Salleh Abu Bakar;Basri Mahiran
    • Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.354-359
    • /
    • 2006
  • This study examined the capacity of immobilized bacteria to degrade petroleum hydrocarbons. A mixture of hydrocarbon-degrading bacterial strains was immobilized in alginate and incubated in crude oil-contaminated artificial seawater (ASW). Analysis of hydrocarbon residues following a 30-day incubation period demonstrated that the biodegradation capacity of the microorganisms was not compromised by the immobilization. Removal of n-alkanes was similar in immobilized cells and control cells. To test reusability, the immobilized bacteria were incubated for sequential increments of 30 days. No decline in biodegradation capacity of the immobilized consortium of bacterial cells was noted over its repeated use. We conclude that immobilized hydrocarbon-degrading bacteria represent a promising application in the bioremediation of hydrocarbon-contaminated areas.

A Leakage Current Analysis of EHV Porcelain Insulators by Artificial Contamination Method (초고압 송전용 자기애자의 인공오손법을 통한 누설전류 분석)

  • Choi, In-Hyuk;Choi, Jang-Hyun;Jung, Yoon-Hwan;Lee, Dong-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.65-68
    • /
    • 2004
  • This paper researched leakage current characteristics of artificially contaminated EHV insulators through construction of long-term testing facility. Insulators were contaminated and classified into the ESDD contaminated levels under IEC standards method. As the test results of contaminated insulators was carried out several experiments, leakage current greatly increased during initial rainfall. After contaminated insulators were naturally washed by rain, leakage current was not increased.

  • PDF

Construction of the infrastructure for evaluating characteristic against contamination for power installation (전력기기 내오손특성 평가기반 구축)

  • Lee, J.G.;Kim, M.K.;Moon, I.W.;Jeong, J.Y.;Kim, I.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1513-1514
    • /
    • 2006
  • In this paper, there have been brief review about the important consideration in laboratory planning and construction of the artificial pollution testing facilities including 300 kV, 1800 kVA AC test system, which enable to lest and evaluate the UHV dielectric performance of power insulators up to transmission class. Also it is described simply about its trial running of the whole test system. To evaluate the performance characteristics against contamination for various power installation, especially for the insulators and kinds of bushings, brief investigation and an analysis of test objects and related international codes and standards have been conducted.

  • PDF

Analyses of Leakage Current of Transmission Insulator as a Function of Environmental Condition (환경에 따른 송전용 애자의 누설전류 분석)

  • Choi, In-Hyuk;Lee, Dong-Il;Kim, Chan-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1166-1170
    • /
    • 2004
  • The leakage currents of transmission insulator were investigated as a function of environmental conditions, such as temperature, humidity, and rainfall. The insulators were artificially contaminated with insoluble yellow soil and kaolin which helped salt to stick on the surface of insulator. The insulators contaminated with the grade of B, C, and D were installed in the KoChang Testing Center. The leakage currents were measured and compared with non-contaminated insulators. The results indicated that the most important factor affecting leakage current was humidity. After heavy rain, the artificially contaminated salt was dissolved, resulting in similar characteristics between with and without contamination

  • PDF