• Title/Summary/Keyword: Artificial Neural Network Analysis (ANN)

Search Result 371, Processing Time 0.033 seconds

A Case Study of Prediction and Analysis of Unplanned Dilution in an Underground Stoping Mine using Artificial Neural Network (인공신경망을 이용한 지하채광 확정선외 혼입 예측과 분석 사례연구)

  • Jang, Hyongdoo;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.282-288
    • /
    • 2014
  • Stoping method has been acknowledged as one of the typical metalliferous underground mining methods. Notwithstanding with the popularity of the method, the majority of stoping mines are suffering from excessive unplanned dilution which often becomes as the main cause of mine closure. Thus a reliable unplanned dilution management system is imperatively needed. In this study, reliable unplanned dilution prediction system is introduced by adopting artificial neural network (ANN) based on data investigated from one underground stoping mine in Western Australia. In addition, contributions of input parameters were analysed by connection weight algorithm (CWA). To validate the reliability of the proposed ANN, correlation coefficient (R) was calculated in the training and test stage which shown relatively high correlation of 0.9641 in training and 0.7933 in test stage. As results of CWA application, BHL (Length of blast hole) and SFJ (Safety factor of Joint orientation) show comparatively high contribution of 18.78% and 19.77% which imply that these are somewhat critical influential parameter of unplanned dilution.

A Study for Estimation of Chlorophyll-a in an Ungauged Stream by the SWMM and an Artificial Neural Network (SWMM과 인공신경망을 이용한 미 계측 하천의 클로로필a 추정에 관한 연구)

  • Kang, Taeuk;Lee, Sangho;Kim, Ilkyu;Lee, Namju
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.670-679
    • /
    • 2011
  • Chlorophyll-a is a major water quality indicator for an algal bloom in streams and lakes. The purpose of the study is to estimate chlorophyll-a concentration in tributaries of the Seonakdonggang by an artificial neural network (ANN). As the tributaries are ungauged streams, a watershed runoff and quality model was used to simulate water quality parameters. The tributary watersheds include urban area and thus Storm Water Management Model (SWMM) was used to simulate TN, TP, BOD, COD, and SS. SWMM, however, can not simulate chlorophyll-a. The chlorophyll-a series data from the tributaries were estimated by the ANN and the simulation results of water quality parameters using SWMM. An assumption used is as follows: the relation between water quality parameters and chlorophyll-a in the tributaries of the Seonakdonggang would be similar to that in the mainstream of the Seonakdonggang. On the assumption, the measurement data of water quality and chlorophyll-a in the mainstream of the Seonakdonggang were used as the learning data of the ANN. Through the sensitivity analysis, the learning data combination of water quality parameters was determined. Finally, chlorophyll-a series were estimated for tributaries of the Seonakdonggang by the ANN and TN, TP, BOD, COD, and temperature data from those streams. The relative errors between the estimated and measured chlorophyll-a were approximately 40 ~ 50%. Though the errors are somewhat large, the estimation process for chlorophyll-a may be useful in ungauged streams.

Development of Pattern Classifying System for cDNA-Chip Image Data Analysis

  • Kim, Dae-Wook;Park, Chang-Hyun;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.838-841
    • /
    • 2005
  • DNA Chip is able to show DNA-Data that includes diseases of sample to User by using complementary characters of DNA. So this paper studied Neural Network algorithm for Image data processing of DNA-chip. DNA chip outputs image data of colors and intensities of lights when some sample DNA is putted on DNA-chip, and we can classify pattern of these image data on user pc environment through artificial neural network and some of image processing algorithms. Ultimate aim is developing of pattern classifying algorithm, simulating this algorithm and so getting information of one's diseases through applying this algorithm. Namely, this paper study artificial neural network algorithm for classifying pattern of image data that is obtained from DNA-chip. And, by using histogram, gradient edge, ANN and learning algorithm, we can analyze and classifying pattern of this DNA-chip image data. so we are able to monitor, and simulating this algorithm.

  • PDF

Damage level prediction of non-reshaped berm breakwater using ANN, SVM and ANFIS models

  • Mandal, Sukomal;Rao, Subba;N., Harish;Lokesha, Lokesha
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.112-122
    • /
    • 2012
  • The damage analysis of coastal structure is very important as it involves many design parameters to be considered for the better and safe design of structure. In the present study experimental data for non-reshaped berm breakwater are collected from Marine Structures Laboratory, Department of Applied Mechanics and Hydraulics, NITK, Surathkal, India. Soft computing techniques like Artificial Neural Network (ANN), Support Vector Machine (SVM) and Adaptive Neuro Fuzzy Inference system (ANFIS) models are constructed using experimental data sets to predict the damage level of non-reshaped berm breakwater. The experimental data are used to train ANN, SVM and ANFIS models and results are determined in terms of statistical measures like mean square error, root mean square error, correla-tion coefficient and scatter index. The result shows that soft computing techniques i.e., ANN, SVM and ANFIS can be efficient tools in predicting damage levels of non reshaped berm breakwater.

Debiasing Technique for Numerical Weather Prediction using Artificial Neural Network

  • Kang, Boo-Sik;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.51-56
    • /
    • 2006
  • Biases embedded in numerical weather precipitation forecasts by the RDAPS model was determined, quantified and corrected. The ultimate objective is to eventually enhance the reliability of reservoir operation by Korean Water Resources Corporation (KOWACO), which is based on precipitation-driven forecasts of stream flow. Statistical post-processing, so called MOS (Model Output Statistics) was applied to RDAPS to improve their performance. The Artificial Neural Nwetwork (ANN) model was applied for 4 cases of 'Probability of Precipitation (PoP) for wet and dry season' and 'Quantitative Precipitation Forecasts (QPF) for wet and dry season'. The reduction on the large systematic bias was especially remarkable. The performance of both networks may be improved by retraining, probably every month. In addition, it is expected that performance of the networks will improve once atmospheric profile data are incorporated in the analysis. The key to the optimal performance of ANN is to have a large data set relevant to the predictand variable. The more complex the process to be modeled by the ANN, the larger the data set needs to be.

  • PDF

Model of Least Square Support Vector Machine (LSSVM) for Prediction of Fracture Parameters of Concrete

  • Kulkrni, Kallyan S.;Kim, Doo-Kie;Sekar, S.K.;Samui, Pijush
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.29-33
    • /
    • 2011
  • This article employs Least Square Support Vector Machine (LSSVM) for determination of fracture parameters of concrete: critical stress intensity factor ($K_{Ic}^s$) and the critical crack tip opening displacement ($CTOD_c$). LSSVM that is firmly based on the theory of statistical learning theory uses regression technique. The results are compared with a widely used Artificial Neural Network (ANN) Models of LSSVM have been developed for prediction of $K_{Ic}^s$ and $CTOD_c$, and then a sensitivity analysis has been performed to investigate the importance of the input parameters. Equations have been also developed for determination of $K_{Ic}^s$ and $CTOD_c$. The developed LSSVM also gives error bar. The results show that the developed model of LSSVM is very predictable in order to determine fracture parameters of concrete.

Development of Construction Performance Indicators Using Artificial Neural Network and Discrete Construction Simulation for Earthmoving Operation (토공사 공정관리를 위한 이산형 건설시뮬레이션과 인공신경망 기반 건설성능지표 도출 방법론)

  • Jung, Dahyun;Park, Seongbong;Lee, Sumin;Han, Seungwoo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.10-11
    • /
    • 2021
  • Demands for digital transformation of the construction industry are increasing to improve the accuracy of the construction operation planning and the performance of the construction operation. Even though large number of studies are being conducted to this date, most of the studies are not likely to be available on the real sites. Therefore, this study provides construction managers with a methodology of drawing construction performance indicators based on productivity analysis using Artificial Neural Network (ANN) models and Web-CYCLONE. This methodology is expected to have high utilization and precision of construction operation planning and management.

  • PDF

Predicting the buckling load of smart multilayer columns using soft computing tools

  • Shahbazi, Yaser;Delavari, Ehsan;Chenaghlou, Mohammad Reza
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.81-98
    • /
    • 2014
  • This paper presents the elastic buckling of smart lightweight column structures integrated with a pair of surface piezoelectric layers using artificial intelligence. The finite element modeling of Smart lightweight columns is found using $ANSYS^{(R)}$ software. Then, the first buckling load of the structure is calculated using eigenvalue buckling analysis. To determine the accuracy of the present finite element analysis, a compression study is carried out with literature. Later, parametric studies for length variations, width, and thickness of the elastic core and of the piezoelectric outer layers are performed and the associated buckling load data sets for artificial intelligence are gathered. Finally, the application of soft computing-based methods including artificial neural network (ANN), fuzzy inference system (FIS), and adaptive neuro fuzzy inference system (ANFIS) were carried out. A comparative study is then made between the mentioned soft computing methods and the performance of the models is evaluated using statistic measurements. The comparison of the results reveal that, the ANFIS model with Gaussian membership function provides high accuracy on the prediction of the buckling load in smart lightweight columns, providing better predictions compared to other methods. However, the results obtained from the ANN model using the feed-forward algorithm are also accurate and reliable.

Prediction of Tunnel Behavior Using Artificial Neural Network (터널거동 평가에서의 인공신경망 활용기법 연구)

  • Yoo, Chung-Sik;Kim, Joo-Mi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1324-1334
    • /
    • 2005
  • This study investigated the applicability of the Artificial Neural Network (ANN) technique for prediction of tunnel behavior. For training data collection, a series of finite element analyses were conducted for actual tunnel project site. Using the data, optimimzed ANNs were developed through a sensitivity study on internal parameters. The developed ANNs can make tunneling related predictions such as tunnel crown settlement, shotcrete lining stress, ground surface settlement, and groundwater inflow rate. The results indicated that the developed ANNs can be used as an effective and efficient tool for tunnelling related prediction in practical tunneling situations.

  • PDF

Sloshing Reduction Optimization of Storage Tank Using Evolutionary Method (진화적 기법을 이용한 유체저장탱크의 슬로싱 저감 최적화)

  • 김현수;이영신;김승중;김영완
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.410-415
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is call ed sloshing, which occurs in moving vehicles with contained liquid masses, such as trucks, railroad cars, aircraft, and liquid rocket. This sloshing effect could be a severe problem in vehicle stability and control. In this study, the optimization design technique for reduction of the sloshing using evolutionary method is suggested. Two evolutionary methods are employed, respectively the artificial neural network(ANN) and genetic algorithm. An artificial neural network is used for the analysis of sloshing and genetic algorithm is adopted as optimization algorithm. As a result of optimization design, the optimized size and location of the baffle is presented

  • PDF