• Title/Summary/Keyword: Artificial Island

Search Result 230, Processing Time 0.033 seconds

A Study on Functionality of the Ulreungdo Seokganju as Korean Traditional Red Pigment (한국 전통 적색광물안료 울릉도석간주의 기능성 연구)

  • Do, Jin-Young;Kim, Soo-Jin;Lee, Sang-Jin;Ahn, Byung-Chan;Yun, Seong-Chul;Kim, Kwang-Jong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.153-162
    • /
    • 2009
  • The main compositions of "Seokganju", a Korean traditional red mineral pigment, are iron oxides. To investigate its mineralogical and functional properties, we had got its ore from Juto cave in Ulreoung island, which was a famous field of it in Korean documents. The ore occurs as a paleosol between the olivine basalt and amphibole trachyte in discontinuously. It is reddish brown and yellowish brown and consists mainly of clay minerals with minor debris. Its reddish and yellowish brown color are due to the hematite and ferrihydrate, respectively. These iron oxides are precipitated as ferrihydrate from the ferrous water in the paleosol and partly changed to hematite. The color reproduced in timber by using seokganju pigment with traditional tools and methods is similar to that in heritage building. The moistureproofing and fire resistance of Ulreungdo seokganju is far better than that of artificial seokganju. Moreover, the combustion tests show that the artificial seokganju promote the ignition and combustion of the timber. Ulreungdo seokganju is regarded as a pigment with fungicidal efficacy because growth of two wood decay fungi (cov. and typ.) are inhibited in solid medium with it.

Preliminary Study for Tidal Flat Detection in Yeongjong-do according to Tide Level using Landsat Images (Landsat 위성을 이용한 조위에 따른 영종도 갯벌의 면적 탐지에 관한 선행 연구)

  • Lee, Seulki;Kim, Gyuyeon;Lee, Changwook
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.639-645
    • /
    • 2016
  • Yeongjong-do is seventh largest island in the west coast of Korea which is 4.8 km away in the direction of south-west from Incheon. The mudflat area around the Yeongjong-do has variable dimension according to tide level. In addition, Yeongjong-do is important area with high environmental value as wintering sites for migratory birds. The mudflat of Yeongjong-do is also meaningful region because it is used as place of education and tourist attraction. But, there are increasing concerns about preservation of mudflat area caused by artificial development such as land reclamation project and Incheon airport construction. In this paper, mudflat area was detected using Landsat 7 ETM+ images that United States Geological Survey (USGS) is providing the data in 16 days period. The false color composite was made from band 7, 5, and 3 that could dividing boundary between water and land for the purpose of appearance of boundary line in mudflat region. This area was calculated using results of classification based on false color composite images and was digitized through repetitive algorithm during research of period. Therefore, the change of northeastern area in Yeongjong-do was detected according to tide level during 16 years from 2000 to 2015 on the basis of providing period at tide station. This paper will expect as indicator for range of area in same tide level prior to the start of the research for preservation of mudflat. It will be also scientific grounds about change of mudflat area caused by artificial development.

Effects of Artificial Shading on Flowering and Growth of Maesa japonica Seedlings (차광 처리가 빌레나무(Maesa japonica)의 개화 및 생장에 미치는 영향)

  • Park, Min Ji;Seo, Yeon Ok;Choi, Hyung Soon;Choi, Byoung Ki;Im, Eun Young;Yang, Ju Eun;Lee, Chae bin
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.462-469
    • /
    • 2021
  • Maesa japonica (Thunb.) Moritzi & Zoll. is a rare evergreen shrub that occurs in west Gotjawal, Jeju island, Korea. This study was conducted to investigate effects of an artificial shading on flowering and growth characteristics of M. japonica seedlings. The level of shading had been set to be 35%, 55% and 75% using shading net. The stage of flowering and flowering ratio, seedling height, the number of leaves and stems, leaf area were measured. Flowering timings were delayed by shading. The number of flowering seedlings per plot and inflorescences per seedling were the most in 55% shading level. Tendency of decreased seedling height with increased shading level was shown. The number of leaves and stems were the fewest values in 75% shading level. The increased biomass with decreased shading level was statistically significant. Aboveground and underground biomass were 2.1 and 1.7 times higher in shading 35% than in shading 75%, respectively. Meanwhile, all seedlings in non-shading plots were dead in winter. Such might be speculated as results of the light stress. As a result, we conclude that M. japonica vitally demands the shading for growth and the optimal shading levels for growth and flowering are 35% and 55%, respectively.

Development of Artificial Intelligence Model for Predicting Citrus Sugar Content based on Meteorological Data (기상 데이터 기반 감귤 당도 예측 인공지능 모델 개발)

  • Seo, Dongmin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.35-43
    • /
    • 2021
  • Citrus quality is generally determined by its sugar content and acidity. In particular, sugar content is a very important factor because it determines the taste of citrus. Currently, the most commonly used method of measuring citrus sugar content in farms is a portable juiced sugar meter and a non-destructive sugar meter. This method can be easily measured by individuals, but the accuracy of the sugar content is inferior to that of the citrus NongHyup official machine. In particular, there is an error difference of 0.5 Brix or more, which is still insufficient for use in the field. Therefore, in this paper, we propose an AI model that predicts the citrus sugar content of unmeasured days within the error range of 0.5 Brix or less based on the previously collected citrus sugar content and meteorological data (average temperature, humidity, rainfall, solar radiation, and average wind speed). In addition, it was confirmed that the prediction model proposed through performance evaluation had an mean absolute error of 0.1154 for Seongsan area and 0.1983 for the Hawon area in Jeju Island. Lastly, the proposed model supports an error difference of less than 0.5 Brix and is a technology that supports predictive measurement, so it is expected that its usability will be highly progressive.

Research on ANN based on Simulated Annealing in Parameter Optimization of Micro-scaled Flow Channels Electrochemical Machining (미세 유동채널의 전기화학적 가공 파라미터 최적화를 위한 어닐링 시뮬레이션에 근거한 인공 뉴럴 네트워크에 관한 연구)

  • Byung-Won Min
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.3
    • /
    • pp.93-98
    • /
    • 2023
  • In this paper, an artificial neural network based on simulated annealing was constructed. The mapping relationship between the parameters of micro-scaled flow channels electrochemical machining and the channel shape was established by training the samples. The depth and width of micro-scaled flow channels electrochemical machining on stainless steel surface were predicted, and the flow channels experiment was carried out with pulse power supply in NaNO3 solution to verify the established network model. The results show that the depth and width of the channel predicted by the simulated annealing artificial neural network with "4-7-2" structure are very close to the experimental values, and the error is less than 5.3%. The predicted and experimental data show that the etching degree in the process of channels electrochemical machining is closely related to voltage and current density. When the voltage is less than 5V, a "small island" is formed in the channel; When the voltage is greater than 40V, the lateral etching of the channel is relatively large, and the "dam" between the channels disappears. When the voltage is 25V, the machining morphology of the channel is the best.

Factors affecting particle breakage of calcareous soil retrieved from South China Sea

  • Wang, Xinzhi;Shan, Huagang;Wu, Yang;Meng, Qingshan;Zhu, Changqi
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.173-185
    • /
    • 2020
  • Calcareous soil is originated from marine biogenic sediments and weathering of carbonate rocks. The formation history for calcareous sediment includes complex physical, biological and chemical processes. It is preferably selected as the major fill materials for hydraulic reclamation and artificial island construction. Calcareous sands possess inter pores and complex shape are liable to be damaged at normal working stress level due to its fragile nature. Thus, the engineering properties of calcareous soil are greatly affected by its high compressibility and crushability. A series of triaxial shear tests were performed on calcareous sands derived from South China Sea under different test conditions. The effects of confining pressure, particle size, grading, compactness, drainage condition, and water content on the total amount of particle breakage for calcareous soil were symmetrically investigated. The test results showed that the crushing extent of calcareous sand with full gradation was smaller than that a single particle group under the same test condition. Large grains are cushioned by surrounding small particles and such micro-structure reduces the probability of breakage for well-graded sands. The increasing tendency of particle crushing for calcareous sand with a rise in confining pressure and compactness is confirmed. It is also evident that a rise in water content enhances the amount of particle breakage for calcareous sand. However, varying tendency of particle breakage with grain size is still controversial and requires further examination.

Issues in offshore platform research - Part 1: Semi-submersibles

  • Sharma, R.;Kim, Tae-Wan;Sha, O.P.;Misra, S.C.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.155-170
    • /
    • 2010
  • Availability of economic and efficient energy resources is crucial to a nation's development. Because of their low cost and advancement in drilling and exploration technologies, oil and gas based energy systems are the most widely used energy source throughout the world. The inexpensive oil and gas based energy systems are used for everything, i.e., from transportation of goods and people to the harvesting of crops for food. As the energy demand continues to rise, there is strong need for inexpensive energy solutions. An offshore platform is a large structure that is used to house workers and machinery needed to drill wells in the ocean bed, extract oil and/or natural gas, process the produced fluids, and ship or pipe them to shore. Depending on the circumstances, the offshore platform can be fixed (to the ocean floor) or can consist of an artificial island or can float. Semi-submersibles are used for various purposes in offshore and marine engineering, e.g. crane vessels, drilling vessels, tourist vessels, production platforms and accommodation facilities, etc. The challenges of deepwater drilling have further motivated the researchers to design optimum choices for semi-submersibles for a chosen operating depth. In our series of eight papers, we discuss the design and production aspects of all the types of offshore platforms. In the present part I, we present an introduction and critical analysis of semi-submersibles.

Consideration on Flap Surgery in Vegetative Patients Having Nosocomial Infection (병원 감염 창상을 가진 식물 인간 상태에서의 피판술시 고려사항)

  • Kim, Jeong Tae;Kim, Kee Woong;Kim, Yeon Hwan;Kim, Chang Yeon
    • Archives of Plastic Surgery
    • /
    • v.36 no.3
    • /
    • pp.277-282
    • /
    • 2009
  • Purpose: The vegetative state is a clinical condition with complete unawareness of self and environment, but with preservation of brain - stem functions. Vegetative patients may have nosocomial infections in their wounds, like pressure sores and infected craniums after cranioplasties. Usually flap surgery is necessary for those wounds, but decision of undergoing surgery is difficult because of various adverse conditions of vegetative patients. We share our experience of several successful flap surgeries in vegetative patients, and evaluate obstacles and requirements to get satisfactory results. Methods: From December 2005 to September 2008, a total of 4 vegetative patients underwent surgeries. In 2 patients with infected artificial craniums, scalp reconstructions with free flaps were performed. In other 2 patients with huge pressure sores with sepsis, island flap coverage of wounds was done. Retrospective study was done on hospital day, vegetative period, number of surgeries done, underlying diseases, causative bacteria, and contents of informed consent. Results: Mean hospital day was 14 months and mean vegetative period was 17.5 months. Patients underwent average of 4.5 surgeries under general anesthesia. There were several underlying diseases like hypertension, DM, CHF and chronic anemia. MRSA(Methicilin - resistant Staphylococcus Aureus) was cultured from every patient's wounds. Informed consent included a warning for high mortality and a need of attentive familial cooperation. Conclusion: There are three requirements for doing flap surgeries in vegetative patients. First, to prevent aggravation of brain damage and underlying diseases by general anesthesia, multidisciplinary team approach is needed. Second, operation should be beneficial for prolonging patient's lifespan. Third, because postoperative care is very difficult and long hospitalization is needed, detailed informed consent and highly cooperative attitude of family should be confirmed before operation.

A Study on Urban Environmental Climate Mapping Method for Sustainable Urban Planning in Daegu (대구지역의 환경친화적 도시계획을 위한 도시환경기후지도 작성에 관한 연구)

  • Park, Myung-Hee;Jung, Woo-Sik;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.20 no.4
    • /
    • pp.465-482
    • /
    • 2011
  • To preserve atmospheric environment of urban areas, it needs to create urban space considering air pollution sources and natural and geographical properties such as wind circulation. According to this study could examine climate and environmental characteristics of Daegu and accordingly suggest a climate map in urban environment and an "advice map" in urban planning. The urban area(area paved with asphalt and concrete) of Daegu has increased by more than five times since 1960. In addition, the analysis of thermal environment through satellite data shows that the surface temperature between a place paved with artificial structures and a farmland shows $10{\sim}20^{\circ}C$ difference during the daytime in the summer. Regarding the parks inhibiting the heat island of a city have the small area of trees, and the road paved with concrete is wide so that they hardly serve as the source of heat absorption. As Apsan is located to the south of Daegu and Palgonsan to the north and Daegu has east high west low type, mountain wind from mountains in the south and north passes a city and delivers heat and air pollutions at night. In the west of Daegue, there is the poorest environment and industrial facilities and environmental basic facilities are mostly located, so large residential complexes that are being built around the industrial facilities as if they set up a folding screen and therefore the poor environment is increasingly worse.

A Study on Green Space Management Planning Considering Urban Thermal Environment (도시 열환경을 고려한 녹지관리방안 수립 연구)

  • Joo, Chang-Hun;Kim, Jeong-Ho;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1349-1358
    • /
    • 2014
  • This study suggests plan of green space management based on the result of research apprehending the characteristic through sorting types of city thermal environment targeting summer which thermal pollution is the most serious. Considering anthropogenic heat, development level of wind road, thermal environment, as a result of types of thermal environment process, it is appeared 36 types, and 10 types is relevant of this research subject. Type I-1, size of building is large, artificial covering area is wide, and thermal load of anthropogenic heat is high, type II-1, development condition of wind road is incomplete as IIlevel, entering cold air is difficult and thermal management and improvement is needed area. Type III-1, scale is large and it is area of origin of cold air, development level of wind road is mostly favorable, type III-2 is revealed as smaller scale than III-1, and small area of origin of cold air. Type IV, anthropogenic heat is $81{\sim}150W/m^2$, average, but development function of wind road is very favorable. Type V, large area of thermal load and the origin of cold air are distributed as similar ratio, and level of development function of wind road is revealed as II level. According to standard of type classification of thermal environment, as a result of suggesting plan of green space management and biotops area ratio, type I-1 is buffer green space and waterway creation, goal biotops area ratio 35%, type II-1 afforestation in site and goal biotops area ratio 40%, type III-1, preservation plan to display the current function continuously is requested. Type IV suggests afforestation of stream current, and type V suggests quantitative increase of green space and goal biotops area ratio 45%.