• Title/Summary/Keyword: Artificial Intelligent Security

Search Result 86, Processing Time 0.022 seconds

A Service Model Development Plan for Countering Denial of Service Attacks based on Artificial Intelligence Technology (인공지능 기술기반의 서비스거부공격 대응 위한 서비스 모델 개발 방안)

  • Kim, Dong-Maeong;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.2
    • /
    • pp.587-593
    • /
    • 2021
  • In this thesis, we will break away from the classic DDoS response system for large-scale denial-of-service attacks that develop day by day, and effectively endure intelligent denial-of-service attacks by utilizing artificial intelligence-based technology, one of the core technologies of the 4th revolution. A possible service model development plan was proposed. That is, a method to detect denial of service attacks and minimize damage through machine learning artificial intelligence learning targeting a large amount of data collected from multiple security devices and web servers was proposed. In particular, the development of a model for using artificial intelligence technology is to detect a Western service attack by focusing on the fact that when a service denial attack occurs while repeating a certain traffic change and transmitting data in a stable flow, a different pattern of data flow is shown. Artificial intelligence technology was used. When a denial of service attack occurs, a deviation between the probability-based actual traffic and the predicted value occurs, so it is possible to respond by judging as aggressiveness data. In this paper, a service denial attack detection model was explained by analyzing data based on logs generated from security equipment or servers.

A New Study on Vibration Data Acquisition and Intelligent Fault Diagnostic System for Aero-engine

  • Ding, Yongshan;Jiang, Dongxiang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.16-21
    • /
    • 2008
  • Aero-engine, as one kind of rotating machinery with complex structure and high rotating speed, has complicated vibration faults. Therefore, condition monitoring and fault diagnosis system is very important for airplane security. In this paper, a vibration data acquisition and intelligent fault diagnosis system is introduced. First, the vibration data acquisition part is described in detail. This part consists of hardware acquisition modules and software analysis modules which can realize real-time data acquisition and analysis, off-line data analysis, trend analysis, fault simulation and graphical result display. The acquisition vibration data are prepared for the following intelligent fault diagnosis. Secondly, two advanced artificial intelligent(AI) methods, mapping-based and rule-based, are discussed. One is artificial neural network(ANN) which is an ideal tool for aero-engine fault diagnosis and has strong ability to learn complex nonlinear functions. The other is data mining, another AI method, has advantages of discovering knowledge from massive data and automatically extracting diagnostic rules. Thirdly, lots of historical data are used for training the ANN and extracting rules by data mining. Then, real-time data are input into the trained ANN for mapping-based fault diagnosis. At the same time, extracted rules are revised by expert experience and used for rule-based fault diagnosis. From the results of the experiments, the conclusion is obvious that both the two AI methods are effective on aero-engine vibration fault diagnosis, while each of them has its individual quality. The whole system can be developed in local vibration monitoring and real-time fault diagnosis for aero-engine.

  • PDF

Intelligent & Predictive Security Deployment in IOT Environments

  • Abdul ghani, ansari;Irfana, Memon;Fayyaz, Ahmed;Majid Hussain, Memon;Kelash, Kanwar;fareed, Jokhio
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.185-196
    • /
    • 2022
  • The Internet of Things (IoT) has become more and more widespread in recent years, thus attackers are placing greater emphasis on IoT environments. The IoT connects a large number of smart devices via wired and wireless networks that incorporate sensors or actuators in order to produce and share meaningful information. Attackers employed IoT devices as bots to assault the target server; however, because of their resource limitations, these devices are easily infected with IoT malware. The Distributed Denial of Service (DDoS) is one of the many security problems that might arise in an IoT context. DDOS attempt involves flooding a target server with irrelevant requests in an effort to disrupt it fully or partially. This worst practice blocks the legitimate user requests from being processed. We explored an intelligent intrusion detection system (IIDS) using a particular sort of machine learning, such as Artificial Neural Networks, (ANN) in order to handle and mitigate this type of cyber-attacks. In this research paper Feed-Forward Neural Network (FNN) is tested for detecting the DDOS attacks using a modified version of the KDD Cup 99 dataset. The aim of this paper is to determine the performance of the most effective and efficient Back-propagation algorithms among several algorithms and check the potential capability of ANN- based network model as a classifier to counteract the cyber-attacks in IoT environments. We have found that except Gradient Descent with Momentum Algorithm, the success rate obtained by the other three optimized and effective Back- Propagation algorithms is above 99.00%. The experimental findings showed that the accuracy rate of the proposed method using ANN is satisfactory.

A Study on the Classification of Cyber Dysfunction and the Social Cognition Analysis in the Intelligent Information Society (지능정보사회의 사이버 역기능 분류와 사회적 인식 분석)

  • Lim, Gyoo Gun;Ahn, Jae Ik
    • Journal of Information Technology Services
    • /
    • v.19 no.1
    • /
    • pp.55-69
    • /
    • 2020
  • The Internet cyber space has become more important as it enters the intelligent information society of the 4th Industrial Revolution beyond the information age through the development of ICT, the expansion of personalized services through mobile and SNS, the development of IoT, big data, and artificial intelligence. The Internet has formed a new paradigm in human civilization, but it has focused only on the efficiency of its functions. Therefore, various side effects such as information divide, cyber terrorism, cyber violence, hacking, and personal information leakage are emerging. In this situation, facing the intelligent information society can lead to an uncontrollable chaos. Therefore, this study classifies the cyber dysfunction of intelligent information society and analyzes social cognition, suggests cyber dysfunction standard of intelligent information society, and examines the seriousness of dysfunction, and suggests technical research directions for future technologies and services. The dysfunctional classification of the intelligent information society was classified into five areas of cyber crime and terrorism, infringement of rights, intelligent information usage culture, intelligent information reliability, and social problems by FGI methodology. Based on the classification, the social perception of current and future cyber dysfunction severity was surveyed and it showed female is more sensitive than male about the dysfunction. A GAP analysis confirmed social awareness that the future society would be more serious about AI and cyber crime

Application of Integrated Security Control of Artificial Intelligence Technology and Improvement of Cyber-Threat Response Process (인공지능 기술의 통합보안관제 적용 및 사이버침해대응 절차 개선 )

  • Ko, Kwang-Soo;Jo, In-June
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.59-66
    • /
    • 2021
  • In this paper, an improved integrated security control procedure is newly proposed by applying artificial intelligence technology to integrated security control and unifying the existing security control and AI security control response procedures. Current cyber security control is highly dependent on the level of human ability. In other words, it is practically unreasonable to analyze various logs generated by people from different types of equipment and analyze and process all of the security events that are rapidly increasing. And, the signature-based security equipment that detects by matching a string and a pattern has insufficient functions to accurately detect advanced and advanced cyberattacks such as APT (Advanced Persistent Threat). As one way to solve these pending problems, the artificial intelligence technology of supervised and unsupervised learning is applied to the detection and analysis of cyber attacks, and through this, the analysis of logs and events that occur innumerable times is automated and intelligent through this. The level of response has been raised in the overall aspect by making it possible to predict and block the continuous occurrence of cyberattacks. And after applying AI security control technology, an improved integrated security control service model was newly proposed by integrating and solving the problem of overlapping detection of AI and SIEM into a unified breach response process(procedure).

Artificial Intelligence In The Modern Educational Space: Problems And Prospects

  • Iasechko, Svitlana;Pereiaslavska, Svitlana;Smahina, Olha;Lupei, Nitsa;Mamchur, Lyudmyla;Tkachova, Oksana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.25-32
    • /
    • 2022
  • The hypothesis of the study of the article is that the use of elements of artificial intelligence will increase the effectiveness of the educational process of the university if: a set of pedagogical conditions for the construction and use of an expert system with elements of artificial intelligence in the educational process of the university is revealed; a model for preparing a future teacher of vocational training for the use of elements of artificial intelligence has been developed; a special course has been developed that contributes to the implementation of the professional orientation of education. In accordance with this, the following tasks were studied in the article: An analysis of scientific and methodological research in the field of the current state, prospects for the development and use of elements of artificial intelligence in the preparation of a future teacher of vocational training and to determine the dynamics of the introduction of intelligent expert systems in education; A set of pedagogical conditions for the construction and use of an expert system with elements of artificial intelligence in the educational process of a university is revealed; It is substantiated to develop a model for preparing a teacher of vocational training to use elements of artificial intelligence.

Adaptive Intrusion Detection Algorithm based on Artificial Immune System (인공 면역계를 기반으로 하는 적응형 침입탐지 알고리즘)

  • Sim, Kwee-Bo;Yang, Jae-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.169-174
    • /
    • 2003
  • The trial and success of malicious cyber attacks has been increased rapidly with spreading of Internet and the activation of a internet shopping mall and the supply of an online, or an offline internet, so it is expected to make a problem more and more. The goal of intrusion detection is to identify unauthorized use, misuse, and abuse of computer systems by both system insiders and external penetrators in real time. In fact, the general security system based on Internet couldn't cope with the attack properly, if ever. other regular systems have depended on common vaccine softwares to cope with the attack. But in this paper, we will use the positive selection and negative selection mechanism of T-cell, which is the biologically distributed autonomous system, to develop the self/nonself recognition algorithm and AIS (Artificial Immune System) that is easy to be concrete on the artificial system. For making it come true, we will apply AIS to the network environment, which is a computer security system.

Artificial Intelligence Application using Nutcracker Optimization Algorithm to Enhance Efficiency & Reliability of Power Systems via Optimal Setting and Sizing of Renewable Energy Sources as Distributed Generations in Radial Distribution Systems

  • Nawaf A. AlZahrani;Mohammad Hamza Awedh;Ali M. Rushdi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.31-44
    • /
    • 2024
  • People have been using more energy in the last years. Several research studies were conducted to develop sustainable energy sources that can produce clean energy to fulfill our energy requirements. Using renewable energy sources helps to decrease the harm to the environment caused by conventional power plants. Choosing the right location and capacity for DG-RESs can greatly impact the performance of Radial Distribution Systems. It is beneficial to have a good and stable electrical power supply with low energy waste and high effectiveness because it improves the performance and reliability of the system. This research investigates the ideal location and size for solar and wind power systems, which are popular methods for producing clean electricity. A new artificial intelligent algorithm called Nutcracker Optimization Algorithm (NOA) is used to find the best solution in two common electrical systems named IEEE 33 and 69 bus systems to examine the improvement in the efficiency & reliability of power system network by reducing power losses, making voltage deviation smaller, and improving voltage stability. Finally, the NOA method is compared with another method called PSO and developed Hybrid Algorithm (NOA+PSO) to validate the proposed algorithm effectiveness and enhancement of both efficiency and reliability aspects.

A Development of Artificial Immune Model for Network Intrusion Detection (네트워크 침입 탐지를 위한 인공 면역 모델의 개발)

  • ;Peter Brently
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.373-379
    • /
    • 1999
  • This pqer investigates the subject of intrusion detection over networks. Existing network-based IDS's are categorised into three groups and the overall architecture of each group is summarised and assessed. A new methodology to this problem is then presented, which is inspired by the human immune system and based on a novel artificial immune model. The architecture of the model is presented and its characteristics are compared with the requirements of network-based IDS's. The paper concludes that this new approach shows considerable promise for future network-based IDS's.

  • PDF

Including P4 and AI: A Survey on SDN Security (P4 와 AI 포함된 SDN 보안 기술 동향 연구 )

  • Xiang Li;Yeonjoon Lee
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.200-202
    • /
    • 2023
  • SDN (Software Defined Networking) is an emerging networking system which differs from traditional network architecture. Moreover SDN has many advantages and special capabilities that traditional networks do not have. SDN and P4 are related in that they can be combined to create more advanced and intelligent networking systems. Additionally, Al has emerged as a transformative force in various fields, including SDN. By applying Al and P4 to SDN, network administrators can leverage the power of them to make impact on SDN security. We offer an overview of recent trend of SDN security integrating P4 a nd Al in this study.