• Title/Summary/Keyword: Artificial Intelligence Algorithms

Search Result 518, Processing Time 0.028 seconds

Shipping systems using optimal route algorithms (최적경로 알고리즘을 활용한 운송 시스템)

  • Ji-Yeon Seo;So-Yeon An;Seul Lee;Seo-Jeong Oh;Sang-Oh Yoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.1084-1085
    • /
    • 2023
  • 현재 국내 항만에서의 작업은 대부분 수작업으로 진행되기 때문에 다양한 안전사고 발생과 시간 및 비용 등의 손실이 우려된다. 이를 해소하고자 최적경로 알고리즘을 이용한 AGV 차량 및 자동화 크레인으로 무인 스마트 항만을 제안한다. RFID 인식으로 컨테이너의 정보를 확인하고, 각 경로의 노드 정보가 담긴 QR 코드 인식을 통해 최적으로 목적지에 달성하는 것이 핵심이다. 본 논문은 이러한 기능으로 시간 및 비용 절감, 효율 상승과 인명피해 및 안전사고 예방을 목표로 한다.

Stock prediction analysis through artificial intelligence using big data (빅데이터를 활용한 인공지능 주식 예측 분석)

  • Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1435-1440
    • /
    • 2021
  • With the advent of the low interest rate era, many investors are flocking to the stock market. In the past stock market, people invested in stocks labor-intensively through company analysis and their own investment techniques. However, in recent years, stock investment using artificial intelligence and data has been widely used. The success rate of stock prediction through artificial intelligence is currently not high, so various artificial intelligence models are trying to increase the stock prediction rate. In this study, we will look at various artificial intelligence models and examine the pros and cons and prediction rates between each model. This study investigated as stock prediction programs using artificial intelligence artificial neural network (ANN), deep learning or hierarchical learning (DNN), k-nearest neighbor algorithm(k-NN), convolutional neural network (CNN), recurrent neural network (RNN), and LSTMs.

Using 3D image-based body shape Measurement to increase the accuracy of body shape Measurement (체형 측정의 정확도를 높이기 위한 3차원 영상 기반의 체형 측정 활용)

  • So, Ji Ho;Jeon, Young-Ju
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.803-806
    • /
    • 2020
  • The body shape measurement method using 3D images has been widely used due to the recent development of 3D measurement cameras and algorithms. Existing 3D imaging devices are expensive devices, and there is a limit to their universalization. Due to the recent spread of inexpensive 3D cameras and the development of various measurement methods, various possibilities are being shown. It is expected to have a great impact on the medical device market that requires accurate data collection. Various medical device products using artificial intelligence are emerging, and accurate data collection is the most important to develop accurate artificial intelligence algorithms. Collection equipment using 3D cameras is expected to act as a major factor in the development of artificial intelligence algorithms using 3D images.

Blockchain Technology for Combating Deepfake and Protect Video/Image Integrity

  • Rashid, Md Mamunur;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1044-1058
    • /
    • 2021
  • Tempered electronic contents have multiplied in last few years, thanks to the emergence of sophisticated artificial intelligence(AI) algorithms. Deepfakes (fake footage, photos, speech, and videos) can be a frightening and destructive phenomenon that has the capacity to distort the facts and hamper reputation by presenting a fake reality. Evidence of ownership or authentication of digital material is crucial for combating the fabricated content influx we are facing today. Current solutions lack the capacity to track digital media's history and provenance. Due to the rise of misrepresentation created by technologies like deepfake, detection algorithms are required to verify the integrity of digital content. Many real-world scenarios have been claimed to benefit from blockchain's authentication capabilities. Despite the scattered efforts surrounding such remedies, relatively little research has been undertaken to discover where blockchain technology can be used to tackle the deepfake problem. Latest blockchain based innovations such as Smart Contract, Hyperledger fabric can play a vital role against the manipulation of digital content. The goal of this paper is to summarize and discuss the ongoing researches related to blockchain's capabilities to protect digital content authentication. We have also suggested a blockchain (smart contract) dependent framework that can keep the data integrity of original content and thus prevent deepfake. This study also aims at discussing how blockchain technology can be used more effectively in deepfake prevention as well as highlight the current state of deepfake video detection research, including the generating process, various detection algorithms, and existing benchmarks.

Development of Artificial Intelligence Janggi Game based on Machine Learning Algorithm (기계학습 알고리즘 기반의 인공지능 장기 게임 개발)

  • Jang, Myeonggyu;Kim, Youngho;Min, Dongyeop;Park, Kihyeon;Lee, Seungsoo;Woo, Chongwoo
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.137-148
    • /
    • 2017
  • Researches on the Artificial Intelligence has been explosively activated in various fields since the advent of AlphaGo. Particularly, researchers on the application of multi-layer neural network such as deep learning, and various machine learning algorithms are being focused actively. In this paper, we described a development of an artificial intelligence Janggi game based on reinforcement learning algorithm and MCTS (Monte Carlo Tree Search) algorithm with accumulated game data. The previous artificial intelligence games are mostly developed based on mini-max algorithm, which depends only on the results of the tree search algorithms. They cannot use of the real data from the games experts, nor cannot enhance the performance by learning. In this paper, we suggest our approach to overcome those limitations as follows. First, we collects Janggi expert's game data, which can reflect abundant real game results. Second, we create a graph structure by using the game data, which can remove redundant movement. And third, we apply the reinforcement learning algorithm and MCTS algorithm to select the best next move. In addition, the learned graph is stored by object serialization method to provide continuity of the game. The experiment of this study is done with two different types as follows. First, our system is confronted with other AI based system that is currently being served on the internet. Second, our system confronted with some Janggi experts who have winning records of more than 50%. Experimental results show that the rate of our system is significantly higher.

Artificial Intelligence Engine for Numerical Analysis of Surface Waves (표면파의 수치해석을 위한 인공지능 엔진 개발)

  • Kwak Hyo-Gyoung;Kim Jae-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.89-96
    • /
    • 2006
  • Nondestructive evaluation using surface waves needs an analytical solution for the reference value to compare with experimental data. Finite element analysis is very powerful tool to simulate the wave propagation, but has some defects. It is very expensive and high time-complexity for the required high resolution. For those reasons, it is hard to implement an optimization problem in the actual situation. The developed engine in this paper can substitute for the finite element analysis of surface waves propagation, and it accomplishes the fast analysis possible to be used in optimization. Including this artificial intelligence engine, most of soft computing algorithms can be applied on the special database. The database of surface waves propagation is easily constructed with the results of finite element analysis after reducing the dimensions of data. The principal wavelet-component analysis is an efficient method to simplify the transient wave signal into some representative peaks. At the end, artificial neural network based on the database make it possible to invent the artificial intelligence engine.

  • PDF

A TabNet - Based System for Water Quality Prediction in Aquaculture

  • Nguyen, Trong–Nghia;Kim, Soo Hyung;Do, Nhu-Tai;Hong, Thai-Thi Ngoc;Yang, Hyung Jeong;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.39-52
    • /
    • 2022
  • In the context of the evolution of automation and intelligence, deep learning and machine learning algorithms have been widely applied in aquaculture in recent years, providing new opportunities for the digital realization of aquaculture. Especially, water quality management deserves attention thanks to its importance to food organisms. In this study, we proposed an end-to-end deep learning-based TabNet model for water quality prediction. From major indexes of water quality assessment, we applied novel deep learning techniques and machine learning algorithms in innovative fish aquaculture to predict the number of water cells counting. Furthermore, the application of deep learning in aquaculture is outlined, and the obtained results are analyzed. The experiment on in-house data showed an optimistic impact on the application of artificial intelligence in aquaculture, helping to reduce costs and time and increase efficiency in the farming process.

Development of Big Data-based Cardiovascular Disease Prediction Analysis Algorithm

  • Kyung-A KIM;Dong-Hun HAN;Myung-Ae CHUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2023
  • Recently, the rapid development of artificial intelligence technology, many studies are being conducted to predict the risk of heart disease in order to lower the mortality rate of cardiovascular diseases worldwide. This study presents exercise or dietary improvement contents in the form of a software app or web to patients with cardiovascular disease, and cardiovascular disease through digital devices such as mobile phones and PCs. LR, LDA, SVM, XGBoost for the purpose of developing "Life style Improvement Contents (Digital Therapy)" for cardiovascular disease care to help with management or treatment We compared and analyzed cardiovascular disease prediction models using machine learning algorithms. Research Results XGBoost. The algorithm model showed the best predictive model performance with overall accuracy of 80% before and after. Overall, accuracy was 80.0%, F1 Score was 0.77~0.79, and ROC-AUC was 80%~84%, resulting in predictive model performance. Therefore, it was found that the algorithm used in this study can be used as a reference model necessary to verify the validity and accuracy of cardiovascular disease prediction. A cardiovascular disease prediction analysis algorithm that can enter accurate biometric data collected in future clinical trials, add lifestyle management (exercise, eating habits, etc.) elements, and verify the effect and efficacy on cardiovascular-related bio-signals and disease risk. development, ultimately suggesting that it is possible to develop lifestyle improvement contents (Digital Therapy).

Key Principles of Clinical Validation, Device Approval, and Insurance Coverage Decisions of Artificial Intelligence

  • Seong Ho Park;Jaesoon Choi;Jeong-Sik Byeon
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.442-453
    • /
    • 2021
  • Artificial intelligence (AI) will likely affect various fields of medicine. This article aims to explain the fundamental principles of clinical validation, device approval, and insurance coverage decisions of AI algorithms for medical diagnosis and prediction. Discrimination accuracy of AI algorithms is often evaluated with the Dice similarity coefficient, sensitivity, specificity, and traditional or free-response receiver operating characteristic curves. Calibration accuracy should also be assessed, especially for algorithms that provide probabilities to users. As current AI algorithms have limited generalizability to real-world practice, clinical validation of AI should put it to proper external testing and assisting roles. External testing could adopt diagnostic case-control or diagnostic cohort designs. A diagnostic case-control study evaluates the technical validity/accuracy of AI while the latter tests the clinical validity/accuracy of AI in samples representing target patients in real-world clinical scenarios. Ultimate clinical validation of AI requires evaluations of its impact on patient outcomes, referred to as clinical utility, and for which randomized clinical trials are ideal. Device approval of AI is typically granted with proof of technical validity/accuracy and thus does not intend to directly indicate if AI is beneficial for patient care or if it improves patient outcomes. Neither can it categorically address the issue of limited generalizability of AI. After achieving device approval, it is up to medical professionals to determine if the approved AI algorithms are beneficial for real-world patient care. Insurance coverage decisions generally require a demonstration of clinical utility that the use of AI has improved patient outcomes.

A Study on the Development of a Chatbot Using Generative AI to Provide Diets for Diabetic Patients

  • Ha-eun LEE;Jun Woo CHOI;Sung Lyul PARK;Min Soo KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.25-31
    • /
    • 2024
  • The purpose of this study is to develop a sophisticated web-based artificial intelligence chatbot system designed to provide personalized dietary service for diabetic patients. According to a 2022 study, the prevalence of diabetes among individuals over 30 years old was 15.6% in 2020, identifying it as a significant societal issue with an increasing patient population. This study uses generative AI algorithms to tailor dietary recommendations for the elderly and various social classes, contributing to the maintenance of healthy eating habits and disease prevention. Through meticulous fine-tuning, the learning loss of the AI model was significantly reduced, nearing zero, demonstrating the chatbot's potential to offer precise dietary suggestions based on calorie intake and seasonal variations. As this technology adapts to diverse health conditions, ongoing research is crucial to enhance the accessibility of dietary information for the elderly, thereby promoting healthy eating practices and supporting disease prevention.