• Title/Summary/Keyword: Artificial Intelligence (AI)

Search Result 2,070, Processing Time 0.028 seconds

Creating Personality and Behavior of NPC Using Probability Distribution (성격 확률 분포를 이용한 NPC의 성격 및 행동 생성)

  • Min, Kyung-Hyun;Lee, Chang-Sook;Um, Ky-Hyun;Cho, Kyung-Eun
    • Journal of Korea Game Society
    • /
    • v.8 no.4
    • /
    • pp.95-105
    • /
    • 2008
  • In virtual games, Non-Playing Character(NPC)s as game elements tend to frequently communicate with game players. Although the artificial-intelligence (AI) algorithm widely used for games has been greatly developed, basic roles of NPCs have remained on the same. In a life game whose goal is to observe the actions and behaviors of the human-like NPCs, for example, their straightahead actions cause boredom. Actually, NPCs fail to display their various expressions that are characterized by humans. To make NPCs act like humans, several characters with a greater variety of characteristics need to be created. this paper proposes how NPCs both express the wide range of emotions using probability distribution and react based on their different characteristics. To verify the change of NPC actions, personalities were assigned according to the probability distribution and this algorithm was applied to a 3D game to validate the method suggested in this paper.

  • PDF

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.

Analysis of NCS Curriculum for Computer Science Major in the 4th Industrial Revolution (4차 산업혁명 시대의 컴퓨터과학 전공자를 위한 NCS 교육과정 분석)

  • Jung, Deok-gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.855-860
    • /
    • 2018
  • The IT technologies applying to IoT(Internet of Things), Big Data, and AI(Artificial Intelligence) are needed in the era of 4th industrial revolution. So, the IT convergence courses of computer science major which will be required in the companies in order to prepare the crises of 4th industry revolution are necessary. And, one approach to cope with this problem is the training of IT convergence man power based on NCS(National Competency Standard) education. In this paper, we propose and analyze the NCS education courses for computer science major in order to teach the students who are needed in the Korean domestic companies preparing the 4th industrial revolution. The skills and applications of Chatbot, Blockchain, and CPS(Cyber Physical System) for the post mobile and post Internet technologies are included in the proposed courses.

Evaluation of Deep-Learning Feature Based COVID-19 Classifier in Various Neural Network (코로나바이러스 감염증19 데이터베이스에 기반을 둔 인공신경망 모델의 특성 평가)

  • Hong, Jun-Yong;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.397-404
    • /
    • 2020
  • Coronavirus disease(COVID-19) is highly infectious disease that directly affects the lungs. To observe the clinical findings from these lungs, the Chest Radiography(CXR) can be used in a fast manner. However, the diagnostic performance via CXR needs to be improved, since the identifying these findings are highly time-consuming and prone to human error. Therefore, Artificial Intelligence(AI) based tool may be useful to aid the diagnosis of COVID-19 via CXR. In this study, we explored various Deep learning(DL) approach to classify COVID-19, other viral pneumonia and normal. For the original dataset and lung-segmented dataset, the pre-trained AlexNet, SqueezeNet, ResNet18, DenseNet201 were transfer-trained and validated for 3 class - COVID-19, viral pneumonia, normal. In the results, AlexNet showed the highest mean accuracy of 99.15±2.69% and fastest training time of 1.61±0.56 min among 4 pre-trained neural networks. In this study, we demonstrated the performance of 4 pre-trained neural networks in COVID-19 diagnosis with CXR images. Further, we plotted the class activation map(CAM) of each network and demonstrated that the lung-segmentation pre-processing improve the performance of COVID-19 classifier with CXR images by excluding background features.

INTRODUCTION OF THE G-7 PROJECT: Integrated System of Water Quality Management (G-7 과제에 대한 소개 : 수질관리를 위한 통합 시스템)

  • Kim, Kye-Hyun;Kim, Eui-Hong;Lee, Hong-Keun;Lee, In-Seon;Ryu, Joong-Hi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.1 no.2 s.2
    • /
    • pp.143-152
    • /
    • 1993
  • A long-term water quality study has been initiated by the Korean Ministry of Environment(MOE) - The G-7 Project--in cooperation with two national research institutes, an University research tn and a consulting firm. This study includes the development of computer software for total water quality management system, so called ISWQM (Integrated System of Water Quality Management). ISWQM includes four major components: a GIS database; two artificial intelligence (AI) based expert systems to estimate pollutant loadings and to provide cost-effective wastewater treatment system for small and medium size urban areas; and computer programs to integrate the database and expert systems. ISWQM is to provide user-friendly Decision Support System (DSS) for water quality planners. A GIS was used to create spatial database which stores all the necessary data to n DSS. GIS was also used to integrate the four components of ISWQM from data creation to decision making through Graphic User Interface (GUI). The results from the first phase of this study showed that GIS would provide an effective tool to build DSS using expert system.

  • PDF

A Survey Analysis of Internet of Things Security Issues and Combined Service

  • Kim, HyunHo;Lee, HoonJae;Lee, YoungSil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.73-79
    • /
    • 2020
  • Since the start of the 4th industrial revolution, technologies have been developed in the Internet of Things (IoT), artificial intelligence (AI), virtual reality (VR), and 5G. Compared to other technologies IoT is currently being commercialized more than other technologies where the numbers of connected things are increases every year. The IoT has a huge advantage to provide convenience and lots of information to users, but security cannot keep up with the speed of development. IoT services continue to provide services for related devices, but at present, more and more types of new services are being combined with other technologies by utilizing the services of devices. This paper reviews and analyzes research on security issues and services related to the Internet of Things to explore how security trends and service delivery will develop in the future.

An Exploratory Study on User Experience of Augmented Reality Advertising (증강현실 광고의 사용자경험에 대한 탐색적 연구)

  • Sung, Jungyeon;Jo, Jae-wook
    • Journal of Digital Convergence
    • /
    • v.14 no.8
    • /
    • pp.177-183
    • /
    • 2016
  • Augmented Reality(AR) has been further developed through connectivity with Artificial Intelligence (AI), Big Data, the Internet of Things(IoT). The interest of AR in the advertising is on the increase. However, it needs to explore the use of AR technology in advertising based on user experience rather than the technical aspects. This study is very significant in that it is the exploratory study which provides guidelines in the field of utilizing AR, particularly based on direct user experience. In addition, through a quantitative survey, it checks the validity of the present study to verify the impact of utilitarian, experiential value of AR ad on brand attitude as consumer attitude. The characteristics of AR ad based on user experience through this study will provide guidance to utilize AR ad, utilizing AR technology in various fields, such as education and exhibitions in developing convergence contents that can provide practical value.

A Study on Improvement of Call Admission Control using Wireless Access Point Sharing (무선 AP 공유를 통한 호 제어 방안 연구)

  • Lim, Seung-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.91-96
    • /
    • 2018
  • Recently, as artificial intelligence technology becomes popular, demand for wireless traffic is rapidly increasing. In order to provide services in response to the increase in demand for wireless traffic, telecommunication companies are generalizing the installation of public APs. In order to provide convenience of using wireless APs between communication companies, it is necessary to share the use of APs in public places to efficiently use wireless resources in a public place, to pre-authenticate between wireless APs in a mobile communication service, So as to increase the convenience of the user. In this paper, we propose to share APs in public places through handoff between APs and pre-authentication between carriers in mobile communication services. The simulation results show that the handoff latency is improved by 35.1% and the bandwidth used by the AP selected by the pre-authentication method can utilize more bandwidth than the method of automatically selecting the AP.

For Improving Security Log Big Data Analysis Efficiency, A Firewall Log Data Standard Format Proposed (보안로그 빅데이터 분석 효율성 향상을 위한 방화벽 로그 데이터 표준 포맷 제안)

  • Bae, Chun-sock;Goh, Sung-cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.1
    • /
    • pp.157-167
    • /
    • 2020
  • The big data and artificial intelligence technology, which has provided the foundation for the recent 4th industrial revolution, has become a major driving force in business innovation across industries. In the field of information security, we are trying to develop and improve an intelligent security system by applying these techniques to large-scale log data, which has been difficult to find effective utilization methods before. The quality of security log big data, which is the basis of information security AI learning, is an important input factor that determines the performance of intelligent security system. However, the difference and complexity of log data by various product has a problem that requires excessive time and effort in preprocessing big data with poor data quality. In this study, we research and analyze the cases related to log data collection of various firewall. By proposing firewall log data collection format standard, we hope to contribute to the development of intelligent security systems based on security log big data.

Perception of Virtual Assistant and Smart Speaker: Semantic Network Analysis and Sentiment Analysis (가상 비서와 스마트 스피커에 대한 인식과 기대: 의미 연결망 분석과 감성분석을 중심으로)

  • Park, Hohyun;Kim, Jang Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.213-216
    • /
    • 2018
  • As the advantages of smart devices based on artificial intelligence and voice recognition become more prominent, Virtual Assistant is gaining popularity. Virtual Assistant provides a user experience through smart speakers and is valued as the most user friendly IoT device by consumers. The purpose of this study is to investigate whether there are differences in people's perception of the key virtual assistant brand voice recognition. We collected tweets that included six keyword form three companies that provide Virtual Assistant services. The authors conducted semantic network analysis for the collected datasets and analyzed the feelings of people through sentiment analysis. The result shows that many people have a different perception and mainly about the functions and services provided by the Virtual Assistant and the expectation and usability of the services. Also, people responded positively to most keywords.

  • PDF