So Yeong Jeong;Chong Hyun Suh;Ho Young Park;Hwon Heo;Woo Hyun Shim;Sang Joon Kim
Journal of the Korean Society of Radiology
/
v.83
no.3
/
pp.473-485
/
2022
The incidence of neurodegenerative diseases in the older population has increased in recent years. A considerable number of studies have been performed to characterize these diseases. Imaging analysis is an important biomarker for the diagnosis of neurodegenerative disease. Objective and reliable assessment and precise detection are important for the early diagnosis of neurodegenerative diseases. Artificial intelligence (AI) using brain MRI applied to the study of neurodegenerative diseases could promote early diagnosis and optimal decisions for treatment plans. MRI-based AI software have been developed and studied worldwide. Representatively, there are MRI-based volumetry and segmentation software. In this review, we present the development process of brain volumetry analysis software in neurodegenerative diseases, currently used and developed AI software for neurodegenerative disease in the Republic of Korea, probable uses of AI in the future, and AI software limitations.
Hoyol Jhang;So Jin Park;Ah-Ram Sul;Hye Young Jang;Seong Ho Park
Korean Journal of Radiology
/
v.25
no.5
/
pp.414-425
/
2024
Objective: This study aims to explore the opinions on the insurance coverage of artificial intelligence (AI), as categorized based on the distinct value elements offered by AI, with a specific focus on patient-centered outcomes (PCOs). PCOs are distinguished from traditional clinical outcomes and focus on patient-reported experiences and values such as quality of life, functionality, well-being, physical or emotional status, and convenience. Materials and Methods: We classified the value elements provided by AI into four dimensions: clinical outcomes, economic aspects, organizational aspects, and non-clinical PCOs. The survey comprised three sections: 1) experiences with PCOs in evaluating AI, 2) opinions on the coverage of AI by the National Health Insurance of the Republic of Korea when AI demonstrated benefits across the four value elements, and 3) respondent characteristics. The opinions regarding AI insurance coverage were assessed dichotomously and semi-quantitatively: non-approval (0) vs. approval (on a 1-10 weight scale, with 10 indicating the strongest approval). The survey was conducted from July 4 to 26, 2023, using a web-based method. Responses to PCOs and other value elements were compared. Results: Among 200 respondents, 44 (22%) were patients/patient representatives, 64 (32%) were industry/developers, 60 (30%) were medical practitioners/doctors, and 32 (16%) were government health personnel. The level of experience with PCOs regarding AI was low, with only 7% (14/200) having direct experience and 10% (20/200) having any experience (either direct or indirect). The approval rate for insurance coverage for PCOs was 74% (148/200), significantly lower than the corresponding rates for other value elements (82.5%-93.5%; P ≤ 0.034). The approval strength was significantly lower for PCOs, with a mean weight ± standard deviation of 5.1 ± 3.5, compared to other value elements (P ≤ 0.036). Conclusion: There is currently limited demand for insurance coverage for AI that demonstrates benefits in terms of non-clinical PCOs.
Eui Jin Hwang;Jin Mo Goo;Ju Gang Nam;Chang Min Park;Ki Jeong Hong;Ki Hong Kim
Korean Journal of Radiology
/
v.24
no.3
/
pp.259-270
/
2023
Objective: It is unknown whether artificial intelligence-based computer-aided detection (AI-CAD) can enhance the accuracy of chest radiograph (CR) interpretation in real-world clinical practice. We aimed to compare the accuracy of CR interpretation assisted by AI-CAD to that of conventional interpretation in patients who presented to the emergency department (ED) with acute respiratory symptoms using a pragmatic randomized controlled trial. Materials and Methods: Patients who underwent CRs for acute respiratory symptoms at the ED of a tertiary referral institution were randomly assigned to intervention group (with assistance from an AI-CAD for CR interpretation) or control group (without AI assistance). Using a commercial AI-CAD system (Lunit INSIGHT CXR, version 2.0.2.0; Lunit Inc.). Other clinical practices were consistent with standard procedures. Sensitivity and false-positive rates of CR interpretation by duty trainee radiologists for identifying acute thoracic diseases were the primary and secondary outcomes, respectively. The reference standards for acute thoracic disease were established based on a review of the patient's medical record at least 30 days after the ED visit. Results: We randomly assigned 3576 participants to either the intervention group (1761 participants; mean age ± standard deviation, 65 ± 17 years; 978 males; acute thoracic disease in 472 participants) or the control group (1815 participants; 64 ± 17 years; 988 males; acute thoracic disease in 491 participants). The sensitivity (67.2% [317/472] in the intervention group vs. 66.0% [324/491] in the control group; odds ratio, 1.02 [95% confidence interval, 0.70-1.49]; P = 0.917) and false-positive rate (19.3% [249/1289] vs. 18.5% [245/1324]; odds ratio, 1.00 [95% confidence interval, 0.79-1.26]; P = 0.985) of CR interpretation by duty radiologists were not associated with the use of AI-CAD. Conclusion: AI-CAD did not improve the sensitivity and false-positive rate of CR interpretation for diagnosing acute thoracic disease in patients with acute respiratory symptoms who presented to the ED.
Hyunsu Choi;Leonard Sunwoo;Se Jin Cho;Sung Hyun Baik;Yun Jung Bae;Byung Se Choi;Cheolkyu Jung;Jae Hyoung Kim
Korean Journal of Radiology
/
v.24
no.5
/
pp.454-464
/
2023
Objective: We aimed to investigate current expectations and clinical adoption of artificial intelligence (AI) software among neuroradiologists in Korea. Materials and Methods: In April 2022, a 30-item online survey was conducted by neuroradiologists from the Korean Society of Neuroradiology (KSNR) to assess current user experiences, perceptions, attitudes, and future expectations regarding AI for neuro-applications. Respondents with experience in AI software were further investigated in terms of the number and type of software used, period of use, clinical usefulness, and future scope. Results were compared between respondents with and without experience with AI software through multivariable logistic regression and mediation analyses. Results: The survey was completed by 73 respondents, accounting for 21.9% (73/334) of the KSNR members; 72.6% (53/73) were familiar with AI and 58.9% (43/73) had used AI software, with approximately 86% (37/43) using 1-3 AI software programs and 51.2% (22/43) having up to one year of experience with AI software. Among AI software types, brain volumetry software was the most common (62.8% [27/43]). Although 52.1% (38/73) assumed that AI is currently useful in practice, 86.3% (63/73) expected it to be useful for clinical practice within 10 years. The main expected benefits were reducing the time spent on repetitive tasks (91.8% [67/73]) and improving reading accuracy and reducing errors (72.6% [53/73]). Those who experienced AI software were more familiar with AI (adjusted odds ratio, 7.1 [95% confidence interval, 1.81-27.81]; P = 0.005). More than half of the respondents with AI software experience (55.8% [24/43]) agreed that AI should be included in training curriculums, while almost all (95.3% [41/43]) believed that radiologists should coordinate to improve its performance. Conclusion: A majority of respondents experienced AI software and showed a proactive attitude toward adopting AI in clinical practice, suggesting that AI should be incorporated into training and active participation in AI development should be encouraged.
Hyunsuk Yoo;Eun Young Kim;Hyungjin Kim;Ye Ra Choi;Moon Young Kim;Sung Ho Hwang;Young Joong Kim;Young Jun Cho;Kwang Nam Jin
Korean Journal of Radiology
/
v.23
no.10
/
pp.1009-1018
/
2022
Objective: This study aimed to investigate the feasibility of using artificial intelligence (AI) to identify normal chest radiography (CXR) from the worklist of radiologists in a health-screening environment. Materials and Methods: This retrospective simulation study was conducted using the CXRs of 5887 adults (mean age ± standard deviation, 55.4 ± 11.8 years; male, 4329) from three health screening centers in South Korea using a commercial AI (Lunit INSIGHT CXR3, version 3.5.8.8). Three board-certified thoracic radiologists reviewed CXR images for referable thoracic abnormalities and grouped the images into those with visible referable abnormalities (identified as abnormal by at least one reader) and those with clearly visible referable abnormalities (identified as abnormal by at least two readers). With AI-based simulated exclusion of normal CXR images, the percentages of normal images sorted and abnormal images erroneously removed were analyzed. Additionally, in a random subsample of 480 patients, the ability to identify visible referable abnormalities was compared among AI-unassisted reading (i.e., all images read by human readers without AI), AI-assisted reading (i.e., all images read by human readers with AI assistance as concurrent readers), and reading with AI triage (i.e., human reading of only those rendered abnormal by AI). Results: Of 5887 CXR images, 405 (6.9%) and 227 (3.9%) contained visible and clearly visible abnormalities, respectively. With AI-based triage, 42.9% (2354/5482) of normal CXR images were removed at the cost of erroneous removal of 3.5% (14/405) and 1.8% (4/227) of CXR images with visible and clearly visible abnormalities, respectively. In the diagnostic performance study, AI triage removed 41.6% (188/452) of normal images from the worklist without missing visible abnormalities and increased the specificity for some readers without decreasing sensitivity. Conclusion: This study suggests the feasibility of sorting and removing normal CXRs using AI with a tailored cut-off to increase efficiency and reduce the workload of radiologists.
Jeong Hoon Lee;Ki Hwan Kim;Eun Hye Lee;Jong Seok Ahn;Jung Kyu Ryu;Young Mi Park;Gi Won Shin;Young Joong Kim;Hye Young Choi
Korean Journal of Radiology
/
v.23
no.5
/
pp.505-516
/
2022
Objective: To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods: A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results: The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876-0.954), 0.813 (0.756-0.870), and 0.684 (0.616-0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840-0.928) and 0.833 (0.779-0.887) in the BSR and GR groups, respectively (p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion: AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.
Yeon Soo Kim;Myoung-jin Jang;Su Hyun Lee;Soo-Yeon Kim;Su Min Ha;Bo Ra Kwon;Woo Kyung Moon;Jung Min Chang
Korean Journal of Radiology
/
v.23
no.12
/
pp.1241-1250
/
2022
Objective: To conduct a simulation study to determine whether artificial intelligence (AI)-aided mammography reading can reduce unnecessary recalls while maintaining cancer detection ability in women recalled after mammography screening. Materials and Methods: A retrospective reader study was performed by screening mammographies of 793 women (mean age ± standard deviation, 50 ± 9 years) recalled to obtain supplemental mammographic views regarding screening mammography-detected abnormalities between January 2016 and December 2019 at two screening centers. Initial screening mammography examinations were interpreted by three dedicated breast radiologists sequentially, case by case, with and without AI aid, in a single session. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and recall rate for breast cancer diagnosis were obtained and compared between the two reading modes. Results: Fifty-four mammograms with cancer (35 invasive cancers and 19 ductal carcinomas in situ) and 739 mammograms with benign or negative findings were included. The reader-averaged AUC improved after AI aid, from 0.79 (95% confidence interval [CI], 0.74-0.85) to 0.89 (95% CI, 0.85-0.94) (p < 0.001). The reader-averaged specificities before and after AI aid were 41.9% (95% CI, 39.3%-44.5%) and 53.9% (95% CI, 50.9%-56.9%), respectively (p < 0.001). The reader-averaged sensitivity was not statistically different between AI-unaided and AI-aided readings: 89.5% (95% CI, 83.1%-95.9%) vs. 92.6% (95% CI, 86.2%-99.0%) (p = 0.053), although the sensitivities of the least experienced radiologists before and after AI aid were 79.6% (43 of 54 [95% CI, 66.5%-89.4%]) and 90.7% (49 of 54 [95% CI, 79.7%-96.9%]), respectively (p = 0.031). With AI aid, the reader-averaged recall rate decreased by from 60.4% (95% CI, 57.8%-62.9%) to 49.5% (95% CI, 46.5%-52.4%) (p < 0.001). Conclusion: AI-aided reading reduced the number of recalls and improved the diagnostic performance in our simulation using women initially recalled for supplemental mammographic views after mammography screening.
With the advent of deep learning technology, which is represented by AlphaGo, artificial intelligence (A.I.) has quickly emerged as a key theme of digital transformation to secure competitive advantage for businesses. In order to understand the trends of A.I. based digital transformation, a clear comprehension of the A.I. business ecosystem should precede. Therefore, this study analyzed the A.I. business ecosystem from the multi-actor network perspective and identified the A.I. platform strategy type. Within internal three layers of A.I. business ecosystem (infrastructure & hardware, software & application, service & data layers), this study identified four types of A.I. platform strategy (Tech. vertical × Biz. horizontal, Tech. vertical × Biz. vertical, Tech. horizontal × Biz. horizontal, Tech. horizontal × Biz. vertical). Then, outside of A.I. platform, this study presented five actors (users, investors, policy makers, consortiums & innovators, CSOs/NGOs) and their roles to support sustainable A.I. business ecosystem in symbiosis with human. This study identified A.I. business ecosystem framework and platform strategy type. The roles of government and academia to create a sustainable A.I. business ecosystem were also suggested. These results will help to find proper strategy direction of A.I. business ecosystem and digital transformation.
Recently, artificial intelligence (AI)-enabled products and services such as smartphones, smart speakers, chatbots are being released due to advances in AI technology. Thus researchers making effort to reveal that consumers' intention to adopt AI-enabled products. Yet, little is known about the intended adoption of AI-enabled products. Because most of studies has been not consideredthe perceived utility value of consumers for each attribute by classified based on the characteristics of AI-enabled products. Therefore, the purpose of this study is to investigate the difference in importance between attributes that affect the intention to adopt of AI-enabled products. For this, first, identified and classified the attributes of AI-enabled products based on IS Success Model of DeLone and McLean. Second, measured the utility value of each attribute on the adoption of AI-enabled products through conjoint analysis. And we employed construal level theory to see whether there are differences in the relative importance of AI-enabled products attributes depending on the temporal distance. Third, we segmented the market based on the utility value of each respondent through cluster analysis and tried to understand the characteristics and needs of consumers in each segment market. We expect to provide theoretical implications for conceptually structured attributes and factors of AI-enabled products and practical implications for how development efforts of AI-enabled products are needed to reach consumers need for each segment.
Hallucination is a significant barrier to the utilization of large-scale language models or multimodal models. In this study, we collected 654 computer science papers with "hallucination" in the abstract from arXiv from December 2022 to January 2024 following the advent of Chat GPT and conducted frequency analysis, knowledge network analysis, and literature review to explore the latest trends in hallucination research. The results showed that research in the fields of "Computation and Language," "Artificial Intelligence," "Computer Vision and Pattern Recognition," and "Machine Learning" were active. We then analyzed the research trends in the four major fields by focusing on the main authors and dividing them into data, hallucination detection, and hallucination mitigation. The main research trends included hallucination mitigation through supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF), inference enhancement via "chain of thought" (CoT), and growing interest in hallucination mitigation within the domain of multimodal AI. This study provides insights into the latest developments in hallucination research through a technology-oriented literature review. This study is expected to help subsequent research in both engineering and humanities and social sciences fields by understanding the latest trends in hallucination research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.