• 제목/요약/키워드: Artificial Intelligence

검색결과 4,739건 처리시간 0.036초

The Speed Control and Estimation of IPMSM using Adaptive FNN and ANN

  • Lee, Hong-Gyun;Lee, Jung-Chul;Nam, Su-Myeong;Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1478-1481
    • /
    • 2005
  • As the model of most practical system cannot be obtained, the practice of typical control method is limited. Accordingly, numerous artificial intelligence control methods have been used widely. Fuzzy control and neural network control have been an important point in the developing process of the field. This paper is proposed adaptive fuzzy-neural network based on the vector controlled interior permanent magnet synchronous motor drive system. The fuzzy-neural network is first utilized for the speed control. A model reference adaptive scheme is then proposed in which the adaptation mechanism is executed using fuzzy-neural network. Also, this paper is proposed estimation of speed of interior permanent magnet synchronous motor using artificial neural network controller. The back-propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back-propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the analysis results to verify the effectiveness of the new method.

  • PDF

인공지능기법을 이용한 동적 이진화 지문인식 방법에 관한 연구 (A Study on the Dynamic Binary Fingerprint Recognition Method using Artificial Intelligence)

  • 강종윤;이주상;이재현;공석민;김동한;이상배
    • 한국지능시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.57-62
    • /
    • 2003
  • 자동화 지문인식을 위한 과정에서 지문영상의 정보를 보존하면서 최적의 세선화와 특이점추출을 위한 중요한 부분은 이진화 과정이다. 이진화 과정은 그레이-스케일 레벨의 영상을 0과 255값으로 바꾸는 과정이다. 이 과정에서 적절한 기준레벨값(Threshold Value)을 설정해 주지 않으면 지문영상의 정보가 손실된다. 본 논문에서는 이진화 과정 부분에 인공지능 기법을 적용하여 입력되는 지문영상에서 실시간으로 기준레벨(Threshold)을 추출하는 방법을 제안한다. 실험결과 기존의 방법과 비교하여 좋은 성능을 보여주고 있음을 나타낸다

최적의 인공신경망 구조 설계를 통한 지반 물성치 추정 (Evaluation of Geotechnical Parameters Based on the Design of Optimal Neural Network Structure)

  • 박형일;황대진;권기철;이승래
    • 한국지반공학회논문집
    • /
    • 제21권9호
    • /
    • pp.25-34
    • /
    • 2005
  • 본 연구에서는 최적의 인공신경망 구조 설계를 위하여 인공신경망과 유전자 알고리즘이 결합된 신경망구조 설계기법이 제안되었다. 저자들은 신경망 구조설계시 인공지능 적용에 따른 계산적인 복잡함을 줄이며, 신경망에 의한 예측의 정확성을 증가시키기 위하여 인공신경망과 유전자 알고리즘의 특성을 조합하였다. 최적의 신경망 구조를 얻기 위하여 신경망 구조의 설계변수들에 대한 유전자 선별기법을 적용하였다. 제안된 합성 기법의 적용성을 평가하기 위하여 여러 지반공학 물성치들을 추정하는 해석에 적용되었다.

지적보전시스템의 실시간 다중고장진단 기법 개발 (Development of Multiple Fault Diagnosis Methods for Intelligence Maintenance System)

  • 배용환
    • 한국안전학회지
    • /
    • 제19권1호
    • /
    • pp.23-30
    • /
    • 2004
  • Modern production systems are very complex by request of automation, and failure modes that occur in thisautomatic system are very various and complex. The efficient fault diagnosis for these complex systems is essential for productivity loss prevention and cost saving. Traditional fault diagnostic system which perforns sequential fault diagnosis can cause catastrophic failure during diagnosis when fault propagation is very fast. This paper describes the Real-time Intelligent Multiple Fault Diagnosis System (RIMFDS). RIMFDS assesses current machine condition by using sensor signals. This system deals with multiple fault diagnosis, comprising of two main parts. One is a personal computer for remote signal generation and transmission and the other is a host system for multiple fault diagnosis. The signal generator generates various faulty signals and image information and sends them to the host. The host has various modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault modules and agents for efficient multiple fault diagnosis. A SUN workstation is used as a host for multiple fault diagnosis and graphic representation of the results. RIMFDS diagnoses multiple faults with fast fault propagation and complex physical phenomenon. The new system based on multiprocessing diagnoses by using Hierarchical Artificial Neural Network (HANN).

Phishing Attack Detection Using Deep Learning

  • Alzahrani, Sabah M.
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.213-218
    • /
    • 2021
  • This paper proposes a technique for detecting a significant threat that attempts to get sensitive and confidential information such as usernames, passwords, credit card information, and more to target an individual or organization. By definition, a phishing attack happens when malicious people pose as trusted entities to fraudulently obtain user data. Phishing is classified as a type of social engineering attack. For a phishing attack to happen, a victim must be convinced to open an email or a direct message [1]. The email or direct message will contain a link that the victim will be required to click on. The aim of the attack is usually to install malicious software or to freeze a system. In other instances, the attackers will threaten to reveal sensitive information obtained from the victim. Phishing attacks can have devastating effects on the victim. Sensitive and confidential information can find its way into the hands of malicious people. Another devastating effect of phishing attacks is identity theft [1]. Attackers may impersonate the victim to make unauthorized purchases. Victims also complain of loss of funds when attackers access their credit card information. The proposed method has two major subsystems: (1) Data collection: different websites have been collected as a big data corresponding to normal and phishing dataset, and (2) distributed detection system: different artificial algorithms are used: a neural network algorithm and machine learning. The Amazon cloud was used for running the cluster with different cores of machines. The experiment results of the proposed system achieved very good accuracy and detection rate as well.

자율주행자동차 오픈플랫폼 온톨로지 구축을 위한 스마트디바이스 연구 (A Study on Smart Device for Open Platform Ontology Construction of Autonomous Vihicles)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.1-14
    • /
    • 2019
  • The 4th Industrial Revolution, intelligent automobile application technology is evolving beyond the limit of the mobile device to a variety of application software and multi-media collective technology with big data-based AI(artificial intelligence) technology. with the recent commercialization of 5G mobile communication service, artificial intelligent automobile technology, which is a fusion of automobile and IT technology, is evolving into more intelligent automobile service technology, and each multimedia platform service and application developed in such distributed environment is being developed Accordingly, application software technology developed with a single system SoC of a portable terminal device through various service technologies is absolutely required. In this paper, smart device design for ontology design of intelligent automobile open platform enables to design intelligent automobile middleware software design technology such as Android based SVC Codec and real time video and graphics processing that is not expressed in single ASIC application software technology as SoC based application designWe have experimented in smart device environment through researches, and newly designed service functions of various terminal devices provided as open platforms and application solutions in SoC environment and applied standardized interface analysis technique and proved this experiment.

Towards Effective Analysis and Tracking of Mozilla and Eclipse Defects using Machine Learning Models based on Bugs Data

  • Hassan, Zohaib;Iqbal, Naeem;Zaman, Abnash
    • Soft Computing and Machine Intelligence
    • /
    • 제1권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Analysis and Tracking of bug reports is a challenging field in software repositories mining. It is one of the fundamental ways to explores a large amount of data acquired from defect tracking systems to discover patterns and valuable knowledge about the process of bug triaging. Furthermore, bug data is publically accessible and available of the following systems, such as Bugzilla and JIRA. Moreover, with robust machine learning (ML) techniques, it is quite possible to process and analyze a massive amount of data for extracting underlying patterns, knowledge, and insights. Therefore, it is an interesting area to propose innovative and robust solutions to analyze and track bug reports originating from different open source projects, including Mozilla and Eclipse. This research study presents an ML-based classification model to analyze and track bug defects for enhancing software engineering management (SEM) processes. In this work, Artificial Neural Network (ANN) and Naive Bayesian (NB) classifiers are implemented using open-source bug datasets, such as Mozilla and Eclipse. Furthermore, different evaluation measures are employed to analyze and evaluate the experimental results. Moreover, a comparative analysis is given to compare the experimental results of ANN with NB. The experimental results indicate that the ANN achieved high accuracy compared to the NB. The proposed research study will enhance SEM processes and contribute to the body of knowledge of the data mining field.

Implementation of Cough Detection System Using IoT Sensor in Respirator

  • Shin, Woochang
    • International journal of advanced smart convergence
    • /
    • 제9권4호
    • /
    • pp.132-138
    • /
    • 2020
  • Worldwide, the number of corona virus disease 2019 (COVID-19) confirmed cases is rapidly increasing. Although vaccines and treatments for COVID-19 are being developed, the disease is unlikely to disappear completely. By attaching a smart sensor to the respirator worn by medical staff, Internet of Things (IoT) technology and artificial intelligence (AI) technology can be used to automatically detect the medical staff's infection symptoms. In the case of medical staff showing symptoms of the disease, appropriate medical treatment can be provided to protect the staff from the greater risk. In this study, we design and develop a system that detects cough, a typical symptom of respiratory infectious diseases, by applying IoT technology and artificial technology to respiratory protection. Because the cough sound is distorted within the respirator, it is difficult to guarantee accuracy in the AI model learned from the general cough sound. Therefore, coughing and non-coughing sounds were recorded using a sensor attached to a respirator, and AI models were trained and performance evaluated with this data. Mel-spectrogram conversion method was used to efficiently classify sound data, and the developed cough recognition system had a sensitivity of 95.12% and a specificity of 100%, and an overall accuracy of 97.94%.

The Approaches of Positive Experience Design on IoT Intelligent Products

  • Wu, Chunmao;Xu, Huayuan;Liu, Ziyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1798-1813
    • /
    • 2021
  • This paper proposes a positive experience design approach for Internet of Things (IoT) intelligent products to improve users' subjective well-being in the fields of artificial intelligence and big data. First, the authors selected six target users and taking the Xiaomi IoT intelligent products for the research objects and conducted a thorough observation on how the target users used IoT intelligent products in their own homes over two weeks via a home-visiting interview, group diary, and focus group. Second, they constructed an individual activities table for the participants' IoT intelligent product experience using a hierarchical task analysis (HTA). Third, two researchers sorted out the sub-tasks of happiness in the HTA table. Finally, the authors found the positive experience design approach of IoT intelligent products. The positive experience design approach of IoT intelligent products is proposed from focusing on the personal pleasure experience to individual life meaningful design and group social relationship design, including individual pleasure experience, personal goal realization, group needs satisfaction and the harmony of group relations. The paper uses the two design examples of an interactive kettle and a harmonious chair to further discuss the feasibility of the design approach. In the era of big data, it is helpful for designers to use this design approach to improve the users' sense of sustainable pleasure, achievement perception of their future goal realization, and the well-being of the group's social relationships.

신용 데이터의 이미지 변환을 활용한 합성곱 신경망과 설명 가능한 인공지능(XAI)을 이용한 개인신용평가 (A Personal Credit Rating Using Convolutional Neural Networks with Transformation of Credit Data to Imaged Data and eXplainable Artificial Intelligence(XAI))

  • 원종관;홍태호;배경일
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권4호
    • /
    • pp.203-226
    • /
    • 2021
  • Purpose The purpose of this study is to enhance the accuracy score of personal credit scoring using the convolutional neural networks and secure the transparency of the deep learning model using eXplainalbe Artifical Inteligence(XAI) technique. Design/methodology/approach This study built a classification model by using the convolutional neural networks(CNN) and applied a methodology that is transformation of numerical data to imaged data to apply CNN on personal credit data. Then layer-wise relevance propagation(LRP) was applied to model we constructed to find what variables are more influenced to the output value. Findings According to the empirical analysis result, this study confirmed that accuracy score by model using CNN is highest among other models using logistic regression, neural networks, and support vector machines. In addition, With the LRP that is one of the technique of XAI, variables that have a great influence on calculating the output value for each observation could be found.