• 제목/요약/키워드: Artificial Field

검색결과 1,842건 처리시간 0.026초

디지털헬스케어에서의 인공지능 적용 사례 및 고찰 (Artificial Intelligence Application Cases and Considerations in Digital Healthcare)

  • 박민서
    • 한국융합학회논문지
    • /
    • 제13권1호
    • /
    • pp.141-147
    • /
    • 2022
  • 디지털 헬스케어의 정의는 광의로는 헬스케어 산업과 ICT가 융합되어 개인건강과 질환을 관리하는 산업영역을 의미하고, 협의로는 환자의 건강을 향상시키기 위해 의료 서비스를 관리하는데 다양한 의료 기술을 사용하는 것을 포함한다. 본 논문은 디지털 헬스케어 분야에 적용되고 있는 인공지능과 기계학습 기법들의 활용사례 소개를 통해 다양한 디지털 헬스케어 분야에 인공지능 기술이 안정적이고 효율적으로 적용할 수 있도록 설계 지침을 제공하는 데 목적이 있다. 이를 위해 본 논문에서는 의료분야와 일상생활 분야로 나누어서 살펴보았다. 두 영역은 다른 데이터 특성을 갖는다. 두 개의 영역을 보다 세분화하여 데이터 특성 및 문제 정의 및 특징에 따른 인공지능 알고리즘 활용사례를 살펴보았다. 이를 통해 디지털 헬스케어 분야에서 활용되는 인공지능 기술들에 대한 이해도를 높이고 다양한 인공지능 기술의 활용에 대한 가능성을 검토하여 인공지능 기술이 헬스케어 산업과 개인의 건강한 삶에 기여할 수 있는 근본적인 가치에 대해 고찰한다.

Analysis of the Status of Artificial Medical Intelligence Technology Based on Big Data

  • KIM, Kyung-A;CHUNG, Myung-Ae
    • 한국인공지능학회지
    • /
    • 제10권2호
    • /
    • pp.13-18
    • /
    • 2022
  • The role of artificial medical intelligence through medical big data has been focused on data-based medical device business and medical service technology development in the field of diagnostic examination of the patient's current condition, clinical decision support, and patient monitoring and management. Recently, with the 4th Industrial Revolution, the medical field changed the medical treatment paradigm from the method of treatment based on the knowledge and experience of doctors in the past to the form of receiving the help of high-precision medical intelligence based on medical data. In addition, due to the spread of non-face-to-face treatment due to the COVID-19 pandemic, it is expected that the era of telemedicine, in which patients will be treated by doctors at home rather than hospitals, will soon come. It can be said that artificial medical intelligence plays a big role at the center of this paradigm shift in prevention-centered treatment rather than treatment. Based on big data, this paper analyzes the current status of artificial intelligence technology for chronic disease patients, market trends, and domestic and foreign company trends to predict the expected effect and future development direction of artificial intelligence technology for chronic disease patients. In addition, it is intended to present the necessity of developing digital therapeutics that can provide various medical services to chronically ill patients and serve as medical support to clinicians.

Concurrent Modeling of Magnetic Field Parameters, Crystalline Structures, and Ferromagnetic Dynamic Critical Behavior Relationships: Mean-Field and Artificial Neural Network Projections

  • Laosiritaworn, Yongyut;Laosiritaworn, Wimalin
    • Journal of Magnetics
    • /
    • 제19권4호
    • /
    • pp.315-322
    • /
    • 2014
  • In this work, Artificial Neural Network (ANN) was used to model the dynamic behavior of ferromagnetic hysteresis derived from performing the mean-field analysis on the Ising model. The effect of field parameters and system structure (via coordination number) on dynamic critical points was elucidated. The Ising magnetization equation was drawn from mean-field picture where the steady hysteresis loops were extracted, and series of the dynamic critical points for constructing dynamic phase-diagram were depicted. From the dynamic critical points, the field parameters and the coordination number were treated as inputs whereas the dynamic critical temperature was considered as the output of the ANN. The input-output datasets were divided into training, validating and testing datasets. The number of neurons in hidden layer was varied in structuring ANN network with highest accuracy. The network was then used to predict dynamic critical points of the untrained input. The predicted and the targeted outputs were found to match well over an extensive range even for systems with different structures and field parameters. This therefore confirms the ANN capabilities and indicates the ANN ability in modeling the ferromagnetic dynamic hysteresis behavior for establishing the dynamic-phase-diagram.

A deep learning framework for wind pressure super-resolution reconstruction

  • Xiao Chen;Xinhui Dong;Pengfei Lin;Fei Ding;Bubryur Kim;Jie Song;Yiqing Xiao;Gang Hu
    • Wind and Structures
    • /
    • 제36권6호
    • /
    • pp.405-421
    • /
    • 2023
  • Strong wind is the main factors of wind-damage of high-rise buildings, which often creates largely economical losses and casualties. Wind pressure plays a critical role in wind effects on buildings. To obtain the high-resolution wind pressure field, it often requires massive pressure taps. In this study, two traditional methods, including bilinear and bicubic interpolation, and two deep learning techniques including Residual Networks (ResNet) and Generative Adversarial Networks (GANs), are employed to reconstruct wind pressure filed from limited pressure taps on the surface of an ideal building from TPU database. It was found that the GANs model exhibits the best performance in reconstructing the wind pressure field. Meanwhile, it was confirmed that k-means clustering based retained pressure taps as model input can significantly improve the reconstruction ability of GANs model. Finally, the generalization ability of k-means clustering based GANs model in reconstructing wind pressure field is verified by an actual engineering structure. Importantly, the k-means clustering based GANs model can achieve satisfactory reconstruction in wind pressure field under the inputs processing by k-means clustering, even the 20% of pressure taps. Therefore, it is expected to save a huge number of pressure taps under the field reconstruction and achieve timely and accurately reconstruction of wind pressure field under k-means clustering based GANs model.

Univector Field Method based Multi-Agent Navigation for Pursuit Problem

  • Viet, Hoang Huu;An, Sang-Hyeok;Chung, Tae-Choong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.86-93
    • /
    • 2012
  • This paper presents a new approach to solve the pursuit problem based on a univector field method. In our proposed method, a set of eight agents works together instantaneously to find suitable moving directions and follow the univector field to pursue and capture a prey agent by surrounding it from eight directions in an infinite grid-world. In addition, a set of strategies is proposed to make the pursuit problem more realistic in the real world environment. This is a general approach, and it can be extended for an environment that contains static or moving obstacles. Experimental results show that our proposed algorithm is effective for the pursuit problem.

A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning

  • Park, Min-Gyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1876-1885
    • /
    • 2003
  • The artificial potential field (APF) methods provide simple and efficient motion planners for practical purposes. However, these methods have a local minimum problem, which can trap an object before reaching its goal. The local minimum problem is sometimes inevitable when an object moves in unknown environments, because the object cannot predict local minima before it detects obstacles forming the local minima. The avoidance of local minima has been an active research topic in the potential field based path planing. In this study, we propose a new concept using a virtual obstacle to escape local minima that occur in local path planning. A virtual obstacle is located around local minima to repel an object from local minima. We also propose the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. This modeling method is adaptable for real-time path planning because it is reliable and provides lower complexity.

Sprite Animation Based Fire Effects Using Spark Textures and Artificial Buoyancy Field

  • Kim, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권10호
    • /
    • pp.95-101
    • /
    • 2018
  • In this paper, we propose an image-based synthesis method that can effectively represent the spark effect in fire simulation. We use the real flame image or animated image as inputs and perform the following steps : 1) extract feature vectors from the image, 2) calculate artificial buoyancy, and 3) generate and advect spark textures. We detect the edge from images and then calculate the feature vectors to calculate the buoyancy. In the next step, we compute the high-quality buoyancy vector field by integrating the two-dimensional feature vector and the fluid equation. Finally, the spark texture is advect by buoyancy field. As a result, our method is performed much faster than the previous approach and high-quality results can be obtained easily and stably.

인공세포 개발을 위한 상향식 합성생물학 (Bottom-up Synthetic Approach to Develop Artificial Cells)

  • 조성민
    • Korean Chemical Engineering Research
    • /
    • 제62권3호
    • /
    • pp.201-213
    • /
    • 2024
  • 세포는 40억년전에 처음 탄생하였으며, 오랜 기간동안 진화하며 발전해온 우수한 시스템이다. 상향식 합성생물학(bottom-up synthetic biology)은 40억년전으로 돌아가 세포를 기초부터 다시 설계하는 접근법으로 "인공세포(artificial cell)"를 개발하는 연구분야이다. 이렇게 개발된 인공세포는 비록 완벽한 세포는 아니지만 세포의 중요한 특징들을 보유한 인공적인 세포 유사(cell mimicry) 시스템이다. 인공세포를 설계함으로써 이 분야의 연구자들은 기존의 세포생물학과는 다른 접근법으로 세포의 체계와 근원을 탐구하고, 나아가서 살아있는 세포의 이용을 대체하고자 하는 목표를 가진다. 본 총설에서는 최근 활발히 연구되고 있는 캡슐 및 생물촉매 기반의 인공세포에 대한 개념 및 이 분야의 최신 연구들을 소개하고자 한다.

스카라 로봇을 위한 충돌 회피 경로 계획 (Collison-Free Trajectory Planning for SCARA robot)

  • 김태형;박문수;송성용;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2360-2362
    • /
    • 1998
  • This paper presents a new collison-free trajectory problem for SCARA robot manipulator. we use artificial potential field for collison detection and avoidance. The potential function is typically defined as the sum of attractive potential pulling the robot toward the goal configuration and a repulsive potential pushing the robot away from the obstacles. In here, end-effector of manipulator is represented as a particle in configuration space and moving obstacles is simply represented, too. we consider not fixed obstacle but moving obstacle in random. So, we propose new distance function of artificial potential field with moving obstacle for SCARA robot. At every sampling time, the artificial potential field is update and the force driving manipulator is derived from the gradient vector of artificial potential field. To real-time path planning, we apply very simple modeling to obstacle. Some simulation results show the effectiveness of the proposed approach.

  • PDF

AUTOMATIC INTERPRETATION OF AWAKE EEG;ARTIFICIAL REALIZATION OF HUMAN SKILL

  • Nakamura, Masatoshi;Shibasaki, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.19-23
    • /
    • 1996
  • A full automatic interpretation of awake electroencephalogram (EEG) had been developed by the authors and presented at the past KACCs in series. The automatic EEG interpretation consists of four main parts: quantitative EEG interpretation, EEG report making, preprocessing of EEG data and adaptable EEG interpretation. The automatic EEG interpretation reveals essentially the same findings as the electroencephalographer's (EEG's), and then would be applicable in clinical use as an assistant tool for EEGer. The method had been developed through collaboration works between the engineering field (Saga University) and the medical field (Kyoto University). This work can be understood as an artificial realization of human expert skill. The procedure for the artificial realization was summarized in a methodology for artificial realization of human skill which will be applicable in other fields of systems control.

  • PDF