DOI QR코드

DOI QR Code

Bottom-up Synthetic Approach to Develop Artificial Cells

인공세포 개발을 위한 상향식 합성생물학

  • Seong-Min Jo (Department of Biomaterial Science, Pusan National University)
  • 조성민 (부산대학교 생명자원과학대학 바이오소재과학과)
  • Received : 2024.06.03
  • Accepted : 2024.07.11
  • Published : 2024.08.01

Abstract

Cells first emerged 4 billion years ago and have evolved over a long period into an excellent system. Bottom-up synthetic biology is a research field that aims to develop "artificial cells" by returning to 4 billion years ago and redesigning cells from scratch. Although these artificial cells are not perfect, they are artificial cell mimicry systems that possess important characteristics of living cells. By designing the artificial cells, researchers in this field aim to explore the organization and the origins of cells from a different approach than traditional cell biology and ultimately seek to replace the use of living cells. This review aims to introduce the concepts and recent research in capsule and biocatalyst-based artificial cells, which have been actively studied recently.

세포는 40억년전에 처음 탄생하였으며, 오랜 기간동안 진화하며 발전해온 우수한 시스템이다. 상향식 합성생물학(bottom-up synthetic biology)은 40억년전으로 돌아가 세포를 기초부터 다시 설계하는 접근법으로 "인공세포(artificial cell)"를 개발하는 연구분야이다. 이렇게 개발된 인공세포는 비록 완벽한 세포는 아니지만 세포의 중요한 특징들을 보유한 인공적인 세포 유사(cell mimicry) 시스템이다. 인공세포를 설계함으로써 이 분야의 연구자들은 기존의 세포생물학과는 다른 접근법으로 세포의 체계와 근원을 탐구하고, 나아가서 살아있는 세포의 이용을 대체하고자 하는 목표를 가진다. 본 총설에서는 최근 활발히 연구되고 있는 캡슐 및 생물촉매 기반의 인공세포에 대한 개념 및 이 분야의 최신 연구들을 소개하고자 한다.

Keywords

Acknowledgement

이논문은 2022학년도 2학기부산대학교기본연구지원사업(2년)의 연구비 지원을 받아 수행된 연구이며(연구기간: 22. 9. 1.~24. 8. 31.), 이에 감사드립니다.

References

  1. Pearce, B. K. D., Tupper, A. S., Pudritz, R. E. and Higgs, P. G., "Constraining the Time Interval for the Origin of Life on Earth," Astrobiology 18(3), 343-364(2018). https://doi.org/10.1089/ast.2017.1674
  2. Xu, Q., Zhang, Z., Lui, P. P. Y., Lu, L., Li, X. and Zhang, X., "Preparation and Biomedical Applications of Artificial Cells," Mater. Today Bio, 23, 100877(2023).
  3. Salehi-Reyhani, A., Ces, O. and Elani, Y., "Artificial Cell Mimics as Simplified Models for the Study of Cell Biology," Exp. Biol. Med., 242(13), 1309-1317(2017). https://doi.org/10.1177/1535370217711441
  4. Oparin, A. I., "The Origin of Life", Translation by Ann Synge. In: Bernal, J. D. (Ed.), "The Origin of Life," Weidenfeld & Nicolson, London, 199-249(1967).
  5. Kuchler, A., Yoshimoto, M. Luginbuhl, S., Mavelli, F. and Walde, P., "Enzymatic Reactions in Confined Environments," Nat. Nanotech., 11, 409-420(2016). https://doi.org/10.1038/nnano.2016.54
  6. Lopez-Garcia, P., Eme, L. and Moreira, D., "Symbiosis in Eukaryotic Evolution," J. Theor. Biol., 434, 20-33(2017). https://doi.org/10.1016/j.jtbi.2017.02.031
  7. Lamparter, L. and Galic, M., "Cellular Membranes, a Versatile Adaptive Composite Material," Front. Cell Dev. Biol., 8, 684 (2020).
  8. Burk, J., Melzer, M., Hagen, A., Lips, K. S., Trinkaus, K., Nimptsch, A. and Leopold, J., "Phospholipid Profiles for Phenotypic Characterization of Adipose-Derived Multipotent Mesenchymal Stromal Cells," Front. Cell Dev. Biol., 9, 784405(2021).
  9. Rideau, E., Dimova, R., Schwille, P., Wurm, F. R. and Landfester, K., "Liposomes and Polymersomes: a Comparative Review Towards Cell Mimicking," Chem. Soc. Rev., 47, 8572-8610(2018). https://doi.org/10.1039/C8CS00162F
  10. Jiang, S., Caire da Silva, L., Ivanov, T., Mottola, M. and Landfester, K., "Synthetic Silica Nano-Organelles for Regulation of Cascade Reactions in Multi-Compartmentalized Systems," Angew. Chem. Int. Ed., 61(6), e202113784(2022).
  11. Elani, Y., Law, R. V. and Ces, O., "Vesicle-based Artificial Cells as Chemical Microreactors with Spatially Segregated Reaction Pathways," Nat. Comm., 5, 5305(2014).
  12. Jo, S.-M., Wurm, F. R. and Landfester, K., "Biomimetic Cascade Network Between Interactive Multicompartments Organized by Enzyme-Loaded Silica Nanoreactors," ACS Appl. Mater. Interf., 10(40), 34230-34237(2018). https://doi.org/10.1021/acsami.8b11198
  13. Seo, H. and Lee, H., "Programmable Enzymatic Reaction Network in Artificial Cell-Like Polymersomes," Adv. Sci. https:// doi.org/10.1002/advs.202305760 (2024) (online publication).
  14. Martino, C., Kim, S.-H., Horsfall, L., Abbaspourrad, A., Rosser, S. J., Cooper, J. and Weitz, D. A., "Protein Expression, Aggregation, and Triggered Release from Polymersomes as Artificial Cell-like Structures," Angew. Chem. Int. Ed., 51(26), 6416-6420 (2012). https://doi.org/10.1002/anie.201201443
  15. Huang, X., Li, M., Green, D. C., Williams, D. S., Patil A. J. and Mann, S., "Interfacial Assembly of Protein-polymer Nano-conjugates Into Stimulus-responsive Biomimetic Protocells," Nat. Comm., 4, 2239(2013).
  16. Huang, X., Patil, A. J., Li, M. and Mann, S., "Design and Construction of Higher-Order Structure and Function in Proteinosome-Based Protocells," J. Am. Chem. Soc., 136(25), 9225-9234 (2014). https://doi.org/10.1021/ja504213m
  17. Kurihara, K., Tamura, M., Shohda, K.-I., Toyota, T., Suzuki, K. and Sugawara, T., "Self-reproduction of Supramolecular Giant Vesicles Combined with the Amplification of Encapsulated DNA," Nat. Chem., 3, 775-781(2011). https://doi.org/10.1038/nchem.1127
  18. Melchiors, M. de S., Ivanov, T., Harley, I., Sayer, C., Araujo, P. H. H., Silva, L. C. da, Ferguson, C. T. J. and Landfester, K., "Membrane Manipulation of Giant Unilamellar Polymer Vesicles with a Temperature-Responsive Polymer," Angew. Chem. Int. Ed., 61(39), e202207998(2022).
  19. Zharova, T. V., Grivennikova, V. G. and Borisov, V. B., "F1.Fo ATP Synthase/ATPase: Contemporary View on Unidirectional Catalysis," Int. J. Mol. Sci., 24(6), 5417(2023).
  20. Otrin, L., Marusic, N., Bednarz, C., Vidakovic-Koch, T., Lieberwirth, I., Landfester, K. and Sundmacher, K., "Toward Artificial Mitochondrion: Mimicking Oxidative Phosphorylation in Polymer and Hybrid Membranes," Nano Lett., 17(11), 6816-6821(2017). https://doi.org/10.1021/acs.nanolett.7b03093
  21. Wu, H., Tian, C., Song, X., Liu, C., Yang, D. and Jiang, Z., "Methods for the Regeneration of Nicotinamide Coenzymes," Green Chem., 15, 1773-1789(2013).
  22. Jo, S.-M., Wurm, F. R. and Landfester, K., "Enzyme-Loaded Nanoreactors Enable the Continuous Regeneration of Nicotinamide Adenine Dinucleotide in Artificial Metabolisms," Angew. Chem. Int. Ed., 60(14), 7728-7734(2021). https://doi.org/10.1002/anie.202012023
  23. Jo, S.-M., Zhang, K.A.I., Wurm, F. R. and Landfester, K., "A Mimic of the Cellular Antioxidant Defense System for a Sustainable Regeneration of Nicotinamide Adenine Dinucleotide (NAD)," ACS Appl. Mater. Interfaces 12(23), 25625-25632(2020). https://doi.org/10.1021/acsami.0c05588
  24. Wei, W., Mazzotta, F., Lieberwirth, I., Landfester, K., Ferguson, C. T. J. and Zhang, K. A. I., "Aerobic Photobiocatalysis Enabled by Combining Core-Shell Nanophotoreactors and Native Enzymes," J. Am. Chem. Soc., 144(16), 7320-7326(2022).  https://doi.org/10.1021/jacs.2c00576