• Title/Summary/Keyword: Artifact removal

Search Result 43, Processing Time 0.017 seconds

High Frequency Noise Reduction in ECG using a Time-Varying Variable Cutoff Frequency Lowpass Filter (시변 가변차단주파수 저역통과필터를 이용한 심전도 고주파 잡음의 제거)

  • 최안식;우응제;박승훈;윤영로
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.137-144
    • /
    • 2004
  • ECG signals are often contaminated with high-frequency noise such as muscle artifact, power line interference, and others. In the ECG signal processing, especially during a pre-processing stage, numerous noise removal techniques have been used to reduce these high-frequency noise without much distorting the original signal. This paper proposes a new type of digital filter with a continuously variable cutoff frequency to improve the signal quality This filter consists of a cutoff frequency controller (CFC) and variable cutoff frequency lowpass filter (VCF-LPF). From the noisy input ECG signal, CFC produces a cutoff frequency control signal using the signal slew rate. We implemented VCF-LPF based on two new filter design methods called convex combination filter (CCF) and weight interpolation fille. (WIF). These two methods allow us to change the cutoff frequency of a lowpass filter In an arbitrary fine step. VCF-LPF shows an excellent noise reduction capability for the entire time segment of ECG excluding the rising and falling edge of a very sharp QRS complex. We found VCF-LPF very useful and practical for better signal visualization and probably for better ECG interpretation. We expect this new digital filter will find its applications especially in a home health management system where the measured ECG signals are easily contaminated with high-frequency noises .

Smoothing Effect in X-ray Microtomogram and Its Influence on the Physical Property Estimation of Rocks (X선 토모그램의 Smoothing 효과가 암석의 물성 예측에 미치는 영향 분석)

  • Lee, Min-Hui;Keehm, Young-Seuk
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.4
    • /
    • pp.347-354
    • /
    • 2009
  • Physical properties of rocks are strongly dependant on details of pore micro-structures, which can be used for quantifying relations between physical properties of rocks through pore-scale simulation techniques. Recently, high-resolution scan techniques, such as X-ray microtomography and high performance computers make it possible to calculate permeability from pore micro-structures of rocks. We try to extend this simulation methodology to velocity and electrical conductivity. However, the smoothing effect during tomographic inversion creates artifacts in pore micro-structures and causes inaccurate property estimation. To mitigate this artifact, we tried to use sharpening filter and neural network classification techniques. Both methods gave noticeable improvement in pore structure imaging and accurate estimation of permeability and electrical conductivity, which implies that our method effectively removes the smoothing effect in pore structures. However, the calculated velocities showed only incremental improvement. By comparison between thin section images and tomogram, we found that our resolution is not high enough, and it is mainly responsible for the inaccuracy in velocity despite the successful removal of the smoothing effect. In conclusion, our methods can be very useful for pore-scale modeling, since it can create accurate pore structure without the smoothing effect. For accurate velocity estimation, the resolution of pore structure should be at least three times higher than that for permeability simulation.

B-mode ultrasound images of the carotid artery wall: correlation of ultrasound with histological measurements

  • Gamble G.;Beaumont B.;Smith H.;Zorn J.;Sanders G.;Merrilees M.;MacMahon S.;Sharpe N.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02b
    • /
    • pp.169-179
    • /
    • 1994
  • B-mode ultrasound is being used to assess carotid atherosclerosis in epidemiological studies and clinical trials. Recently the interpretation of measurements made from ultrasound images has been questioned. This study examines the anatomical correlates of B-mode ultrasound of carotid arteries in vitro and in situ in cadavers. Twenty-seven segments of human carotid artery were collected at autopsy. pressure perfusion fixed in buffered 2.5% gluteraldehyde and 4% paraformaldehyde and imaged using an ATL UM-8 (10 MHz single crystal mechanical probe). Each artery was then frozen, sectioned and stained with van Gieson or elastin van Gieson. The thickness of the intima. media and adventitia were measured 'to an accuracy of 0.01 mm from histological sections using a calibrated eye graticule on a light microscope. Shrinkage artifact induced by histological preparation was determined to be 7.8%. Digitised ultra sound images of the artery wall were analysed off-line. The distance from the leading edge of the first interface ($LE_{1}$) to the leading edge of the second interface ($LE_2$) was measured using a dedicated programme. $LE_{1}$-$LE_{2}$ measurements were correlated against histological measurements corrected for shrinkage. Mean values for the far wall were: ultra sound $LE_{1}$-$LE_{2}$ (0.97 mm, S.D. 0.26), total wall thickness (1.05 mm, S.D. 0.37), adventitia (0.35 mm, S.D. 0.16), media (0.61 mm, S.D. 0.18). intima (0.09 mm, S.D. 0.13). Ultrasound measurements corresponded best with total wall thickness, rather than elastin or the intima-media complex. Excision of part of the intima plus media or removal of the adventitia resulted in a corresponding decrease in the $LE_{1}$-$LE_{2}$ distance of the B-mode image. Furthermore. increased wall thickness due to intimal atherosclerotic thickening correlated well with $LE_{1}$-$LE_{2}$ distance of the B-mode images. B-mode images obtained from the carotid arteries in situ in four cadavers also corresponded best with total wall thickness measured from histological sections and not with the thickness of the intima plus media. In conclusion, the $LE_{1}$-$LE_{2}$ distance measured on B-mode images of the carotid artery best represents total wall thickness of intima plus media plus adventitia and not intima plus media alone.

  • PDF