• Title/Summary/Keyword: Articulation Angle

Search Result 18, Processing Time 0.026 seconds

A Study on the Factors that Influence Jack Knife Phenomenon of Articulated Vehicles (연결(連結) 차량(車輛)의 재크나이프 현상에 영향(影響)을 미치는 인자(因子)인자에 대한 연구)

  • Kang, D.M.;Ahn, S.M.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.58-63
    • /
    • 2007
  • Vehicular safety and occupant injury have been of considerable interest to the public. The dynamic response of an articulated vehicle is different from that of single body vehicle due to its geometric and inertia properties. Articulated vehicles have the tendency to jackknife if they lose driving safety. Influence of factors for driving safety of an articulated vehicle(Tractor-Semitrailers) has been analysed by the EDVTS, a kinetic analysis program for an articulated vehicle. EDVTS permits an analyst to investigate the effect of many variables in a short period of time, and enables to obtain an accurate explanation of driving safety. The factors used in the analysis include the load, friction coefficient, tire flat, increase of braking force, and trailer geometry. Based on the results, the articulation angle and driving safety were influenced remarkably by the load, coefficient of friction, increase of braking force. However, trailer geometry, such as length and width, did not affect articulation angle and driving safety

  • PDF

The Effects Where the Stroke Shoes Which Use Functional Electric Stimulation Goes Mad to Walking of the Hemiplegia (기능적 전기자극 치료기를 이용한 중풍구두가 편마비 환자의 보행에 미치는 영향)

  • Kim, Jeong-Seon;Park, Ji-Whan
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • Purpose: An objective analysis and observations were to be done on hemiplegia patients that are wearing a walking support device, Stroke shoes. Their improvements in walking pace, the reduction of distance between the two knee joint, the increase of curve angle of the knee joint and their steps and the reduction of ankle joint upon swing phase were analyzed using a 20 walking analyzer. Methods: An examination was carried out to see the patients' communication skill and independent walking and then let them walk with the Stroke shoes on to get results before and after wearing it. Simi Reality Motion Systems GmbH (Germany, 2007) was used to analyze the results regarding knee joint and ankle joint angle changes of sagitta plane and coronal plane, stepping distances, distances between the knees and walking pace. Results: 1. The articulation angle of ankle joint during swing phase decreased and knee joint has shown a statistically significant increase in such value(p<0.05). 2. Only knee joint showed a significant increase in articulation angle during heel strike(p<0.05). 3. Knee joint showed a significant increase in articulation angle during toe off(p<0.05). 4. The distance between the two knees as well as their foot steps significantly decreased compared with when Stroke shoes were not worn(p<0.05). 5. Stroke shoes with FES have shown positive effects on the patients in improving their walking styles overall. (p<0.05). Conclusion: There was an improvement in rotation walking pattern by a reduction in the distance between the knees after wearing Stroke shoes with FES. Plantar flexion reduced that occurred in ankle joint during walking and flexion angle increased in knee joint, both of which improved foot drop which was a major problem in hemiplegia patients. Also it is believed that the device will have some positive influences on knee joint stiffening paralysis to aid in improving inefficient walking phases.

  • PDF

Development Process on the Control Software for Camera and Grating Articulation System Prototype (CGAS-P) of the Giant Magellan Telescope Multi-Object Astronomical and cosmological Spectrograph (GMACS)

  • Ji, Tae-Geun;Cook, Erika;Kelly, Evan;DePoy, Darren L.;Marshall, Jennifer;Lee, Hye-In;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.46.3-46.3
    • /
    • 2019
  • We present the control software and its development process for a prototype of the Camera and Grating Articulation System (CGAS) for GMACS, a wide-field, multi-object, moderate-resolution optical spectrograph for the Giant Magellan Telescope (GMT). The CGAS prototype is currently designed for the camera articulation controller as a miniature model of the GMACS. The camera articulation package (CAP) is a software that controls two stepper motors to adjust the camera angle. The package is developed using Visual C++ and runs on Windows 10. We discuss the architectural design and communication route between the high-end user software and the electronics hardware.

  • PDF

Comparative Analysis of Open- Spike between Excellent and Non-excellent Players in Volleyball (배구 우수선수와 비우수선수간의 오픈 스파이크 동작의 비교 분석)

  • Kim, Chang-Bum;Kim, Young-Suk;Shin, Jun-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.253-264
    • /
    • 2003
  • This study aims at finding the structure of spike technique by analysing comparatively the spike action by excellent and by non-excellent players throughout the section from a flying jump to the time of landing for the correct analysis of spike action and tries to help athletes and coaches to execute a scientific training. For the objected person of this study, six of H College athletes three of excellent athletes and three of non-excellent athletes, presently registered as athlete with the Korea Volleyball federation) were chosen, and the factors of analysis were analysed upon performance time of action by section, human body centered displacement, change of articulation angle, speed change of articulation of the upper limbs, uniformity of the articulation of the upper limbs upon impact, etc. The conclusion of this study is as follow: 1. In the time required for taking action, it shows to take $1.067{\pm}0.057$ seconds for the group of excellent athletes and $1.034{\pm}0.033$ seconds for the group of non-excellent athletes. Although there was not big difference between two groups in the performance time of action, it showed that the group of excellent athletes takes longer compared to the group of non-excellent athletes. And it was found by the result of this study that the group of excellent athletes stays longer in the duration of flight. 2. In the displacements of horizontal movement and vertical movement, it was found that the group of excellent athletes have moved more than the group of non-excellent athletes in the horizontal movement of the center of human body 3. In the angles of wrist and knee, it was found that the excellent athletes have shown little than the non-excellent athletes in the entire sections, but that in the angle of elbow, the non-excellent athletes have shown bigger than the excellent athletes.. 4. In the speed of the articulation of the upper limbs upon impact, it was found that the group of excellent athletes have shown bigger than the group of non-excellent athletes, and that in the maximum value of the articulation of the upper limbs, the maximum value for the hand was indicated upon impact and that forearm and upper arm have shown the maximum value just before the impact. 5. In the uniformity of articulation of the upper limbs at the time of impact, the group of excellent athletes showed bigger than the group of non-excellent athletes in all the articulations.

AN ACOUSTIC ANALYSIS OF PRONUNCIATION IN CHILDREN WITH ANGLE'S CLASS II DIV. 1 MALOCCLUSION (Angle씨 II급 1류 부정교합아동의 발음에 관한 음향학적 연구)

  • Park, Yun-Chung;Lee, Sang-Hoon;Shon, Dong-Su
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.1
    • /
    • pp.95-111
    • /
    • 1997
  • The human speech organ consists of respiration system (lung, larynx), phonation system (vocal cord), articulation system (esophagus, pharynx, uvula, teeth, gingiva, palate, tongue, lip) and resonating system(oral cavity, nasal cavity, paranasal sinus). Because teeth are components of the articulation system, it has been reported that the persons with abnormally positioned teeth generally have abnormal occlusion and pronunciation. In this study, using /ㅅ(s)/, the most commonly mispronunced consonant in children with malocclusion, and the seven single vowels, /사(sa), 서($s\delta$), 소(so), 수(su), 스($s\omega$), 시(si), 세(se)/ and / ㅏ(a), ㅓ($\delta$), ㅗ(o), ㅜ(u), ㅡ($\omega$), 1(i), ㅔ(e)/ were recorded and analyzed using speech analysis program on computer by measuring formants and compared them for investigating the differences in pronunciation in children with Angle's class I occlusions and those with Angle's class II div.1 malocclusion. The result were as follows: 1. In the Angle's Class II div.1 group, there were no significant differences in F1 of all recorded sounds as compared with Angle's Class I group(p>0.05). 2. In the consonants, there were significant differences in F2 of /스($s\omega$)/ and F2/F1 ratio of /사(sa), 서($s\delta$), 시(si)/ between the two group(p<0.05). 3. In the vowels, there were significant differences F2/F1 ratio of /ㅓ($\delta$)/(p<0.05) and no significant differences in F2/F1 ratio between two group(p>0.05). 4. In the consonants, there were significant differences in F2 and F2/F1 ratio when succeeding vowels were high or low, and F2/F1 ratio when front in accordance with tongue position (p<0.05). 5. In the vowels, there were no significant differences in formant in accordance with tongue position(p>0.05)

  • PDF

A Review of Patellofemoral Angle (슬개대퇴골각에 관한 고찰)

  • Bae, Sung-Soo;Kim, Ho-Bong;Lee, Sang-Yong;Kim, Eun-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.197-204
    • /
    • 2001
  • Knee is a middle joint in lower extremity and has relationship with hip joint and ankle joint alignment. Therefore the knee joint alignment is very important in aspect of biomechanically. Knee joint alignment depend upon patellar stability. Instability of the patellofemoral articulation, in the form of patellar subluxation or dislocation may be associated with a number of factors. Normal range of patellofemoral angle is very different by the reporter and by the gender also.

  • PDF

Development of the All Wheel Steering ECU for Articulated Vehicle (굴절차량을 위한 전차륜 조향 시스템 전자제어 장치 개발)

  • Kim, Ki-Jeong;Chung, Ki-Hyun;Choi, Kyung-Hee;Lee, Soo-Ho;Park, Tae-Won;Moon, Kyeong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1231-1236
    • /
    • 2008
  • Since the bi-modal tram is too long so that the traditional steering system controlled only the first axle increases its turning radius, it is not suitable to the domestic road environment. In addition, it become hard to make fine parking with the traditional steering system. To resolve the problem, the bi-modal tram requires an all wheel steering system (AWS) that the second axle is controlled by the first axle's degree and the velocity of vehicle, and the third axle is steered by the articulation angle's degree and the velocity of degree. This paper addresses the factors for the AWS ECU design, the strategies to solve the problems, the core technologies for the implementation, and also the outcomes and analysis of the performance evaluation of implemented system.

  • PDF

Effects of the Probody Massage on the Physical Characteristics, Gross Motor Function and ROM in Youth with Cerebral Palsy : Case study (프로바디마사지가 뇌병변 장애우의 신체적 특성과 대동작 기능 및 관절 가동범위에 미치는 영향 : 사례연구)

  • Kim, Eui-Suk;Yang, Jeong-Ok;Lee, Joong-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.4
    • /
    • pp.453-463
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of the Probody Massage Program on the physical characteristics, gross motor function and ROM (Range Of Motion) of children with cerebral palsy. Method : The subjects of this study were two children who have been diagnosed with first grade cerebral palsy that utilized T development support center located in B Metropolitan city for 8 weeks, twice a week, to carry out the Probody Massage Program for 30 minutes. Physiological reactions (height, weight, BMI, blood pressure (an index of inflammation), pulse rate) and large operating functions (sitting, crawling and the joints' range of motion as an angle of the shoulders' upper limb articulation) were measured pretest, after 4 weeks, and after 8 weeks. Results : The Probody Massage Program showed positive changes in physical characteristics (blood pressure, sitting, and crawling), gross motor function (upper limb shoulder movement), joint range of motion, height, body weight, metabolic activation and blood circulation of children with cerebral palsy. Conclusion : We believe making a practical impact on the growth and development, functional recovery of daily life, and improvement of quality of life of children with cerebral palsy by utilizing Probody Massage Program improves blood pressure (an index of inflammation), pulse, sitting, crawling, and the joints' range of motion as an angle of the shoulder joints' upper limb movement of children with cerebral palsy.

Correlations between the Muscle Thickness of the Transverse Abdominis and the Multifidus Muscle with Spinal Alignment in College Students (대학생의 배가로근과 뭇갈래근 두께와 척추정렬간의 상관관계)

  • Lim, Jae-Heon
    • PNF and Movement
    • /
    • v.12 no.4
    • /
    • pp.243-248
    • /
    • 2014
  • Purpose: The transverse abdominis and themultifidus muscle are located in the core. They surround one's trunk and help in body stabilization. Specifically, they control spine articulation to maintain posture and balance. Therefore, weakened deep muscle in the trunk may cause spinal malalignment. This study aims to compare the correlation between the thickness of the transverse abdominis and the multifidus muscle and the spine alignment among college students in their 20s. Methods: This study measured the thickness of the transverse abdominis and the multifidus muscle of 42 healthy college students in their 20s using ultrasonic waves. The thickness of the muscle was measured for the length of the cross-section except for fascia. The thickness of the left and right muscles was measured, and the mean value was calculated. As the thickness of the transverse abdominis can increase because of pressure during exhalation, it was measured at the last moment of exhalation. Spinal alignment was measured by the kyphosis angle, lordosis angle, pelvic tilt, trunk inclination, lateral deviation, trunk imbalance, and surface rotation using Formetric III, which is a three-dimensional imaging equipment. They were measured for three times, and the mean values were calculated. The general characteristics of the subjects were analyzed using descriptive statistics. The correlations between each factor were analyzed using Pearson's correlation analysis. Results: The transverse abdominis showed asignificant correlation with trunk inclination (p<.05). The multifidus muscle showed a significant positive correlation with pelvic tilt and a negative correlation with surface rotation (p<.05). Conclusion: The thickness of transverse abdominis and the multifidus muscle appears to influence spinal alignment. Specifically, the multifidus muscle, which plays an important role on the sagittal plane, influences surface rotation, thus making it an important muscle for scoliosis patients. Therefore, a strengthening training program for the transverse abdominis and the multifidus muscle is necessary according to specific purposes among adults with spinal malalignment.

Response of Skew Bridges with permutations of geometric parameters and bearings articulation

  • Fakhry, Mina F.;ElSayed, Mostafa M.;Mehanny, Sameh S.F.
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.477-487
    • /
    • 2019
  • Understanding the behavior of skew bridges under the action of earthquakes is quite challenging due to the combined transverse and longitudinal responses even under unidirectional hit. The main goal of this research is to assess the response of skew bridges when subjected to longitudinal and transversal earthquake loading. The effect of skew on the response considering two- and three- span bridges with skew angles varying from 0 to 60 degrees is illustrated. Various pier fixities (and hence stiffness) and cross-section shapes, as well as different abutment's bearing articulations, are also studied. Finite-element models are established for modal and seismic analyses. Around 900 models are analyzed under the action of the code design response spectrum. $Vis-{\grave{a}}-vis$ modal properties, the higher the skew angle, the less the fundamental period. In addition, it is found that bridges with skew angles less than 30 degrees can be treated as straight bridges for the purpose of calculating modal mass participation factors. Other monitored results are bearings' reactions at abutments, shear and torsion demand in piers, as well as deck longitudinal displacement. Unlike straight bridges, it has been typically noted that skew bridges experience non-negligible torsion and bi-directional pier base shears. In a complementary effort to assess the accuracy of the conducted response spectrum analysis, a series of time-history analyses are applied under seven actual earthquake records scaled to match the code design response spectrum and critical comparisons are performed.