• Title/Summary/Keyword: Arthrobacter

Search Result 139, Processing Time 0.023 seconds

The Synergistic Action of the AL-Protease from Arthrobacter luteus on the Lysis of Yeast Cell Walls (Arthrobacter luteus가 생산하는 AL-Protease의 효모세포벽 용해 촉진작용)

  • Oh, Hong-Rock;Funatsu, Masaru
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.4
    • /
    • pp.401-408
    • /
    • 1985
  • The yeast cell wall lytic action of the alkaline AL-protease, which was found out of the crude Zymolyase that a kind of yeast cell wall lytic $endo-{\beta}-1$, 3-glucanase produced from Arthrobacter luteus, was investigated with the viable cells of S. sake and it's cell wall preparation. AL-protease on the lysis of the viable yeast cells showed very low activities with the alone, but the lytic activities were highly increased with the combination of AL-protease and Zymolyase. On the stepwise treatment of the viable yeast cells with AL-protease and Zymolyase, the cells were lysed highly only by the course having a treatment with Zymolyase after pretreatment with AL-protease. Thus synergistic action of AL-protease was not observed with any some commercial enzymes, known as a type of alkaline and serine protease such as AL-protease, and was also found to be affected greatly by the culture conditions and species of the yeast tested. AL-protease caused the release of some peptide and a lot of sugar from the cell wall preparation, but could not lysed the cell wall more than 66%. Whereas Zymolyase could lysed the cell walls almost completely with alone. On the basis of these results, the synergistic action of AL-protease on the lysis of S. sake cells is hypothesized that at first AL-protease bind to the yeast cell surface layer consisting of mannan and protein, and then changes their conformation to facilitate the penetration of Zymolyase from the outside to the inside framework layer constituted of alkali insoluble ${\beta}-1,\;3-glucan$.

  • PDF

Isolation and Identification of Histamine Degrading Bacteria from Kwamegi (과메기에서 histamine 분해능을 나타내는 세균의 분리 동정)

  • Kim Min-Woo;Kim Young-Man
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.120-125
    • /
    • 2006
  • To isolate and identify histamine degrading bacteria from Kwamegi, bacteria were screened with restriction media containing histamine. Ten strains were selected through morphological and biochemical identification procedure followed by comparison with DNA sequence of 16 rRNA gene. And also, these strains were confirmed by the histamine degrading assay such as turbidity and enzymatic assay. The results of identification are as followings : Ewingella americana B791, Arthrobacter sp. R45S, Halomonas marisflava, Psychrobacter sp. 9B-7, Bacillus sp. LMC 21002, Psychrohacter cibarius BC-220, Bacillus megaterium KL-197 were identified showing homology of $99\%,\;95\%,\;98\%,\;99\%,\;99\%,\;99\%\;and\;98\%$, respectively. Three strains remain unidentified. Arthrobacter sp. R45S, H. marisflava, Bacillus sp. LMG 21002, B. megaterium KL-197 showed histamine degrading activity, whereas, Psychrobacter sp. 9B-7 only showed weak activity. Three unidentified strains also have histamine degrading activity. In contrast, E. american B791 and p. cibarius JG-220 did not show any significant activity of histamine degradation. The strains isolated from this study showed relatively fast growth rate and histamine degrading rate as compared to those from salted mackerel.

Calcite-Forming Bacteria for Compressive Strength Improvement in Mortar

  • Park, Sung-Jin;Park, Yu-Mi;Chun, Woo-Young;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.782-788
    • /
    • 2010
  • Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and X-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the $CaCO_3$ crystals. We used the isolates to improve the compressive strength of cement-sand mortar cubes and found that KNUC403 offered the best improvement in compressive strength.

Production of Acrylic Acid from Acrylonitrile by Immobilization of Arthrobacter nitroguajacolicus ZJUTB06-99

  • Shen, Mei;Zheng, Yu-Guo;Liu, Zhi-Qiang;Shen, Yin-Chu
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.582-587
    • /
    • 2009
  • Immobilized cells of Arthrohacter nitroguajacolicus ZJUTB06-99 capable of producing nitrilase were used for biotransformation of acrylonitrile to acrylic acid. Six different entrapment matrixes were chosen to search for a suitable support in terms of nitrilase activity. Ca-alginate proved to be more advantageous over other counterparts in improvement of the biocatalyst activity and bead mechanical strength. The effects of sodium alginate concentration, $CaCl_2$ concentration, bead diameter, and ratio by weight of cells to alginate, on biosynthesis of acrylic acid by immobilized cells were investigated. Maximum activity was obtained under the conditions of 1.5% sodium alginate concentration, 3.0% $CaCl_2$ concentration, and 2-mm bead size. The beads coated with 0.10% polyethylenimine (PEI) and 0.75% glutaraldehyde (GA) could tolerate more phosphate and decrease leakage amounts of cells from the gel. The beads treated with PEI/GA could be reused up to 20 batches without obvious decrease in activities, which increased about 100% compared with the untreated beads with a longevity of 11 batches.

Enzymological Properties of the Alkaline AL-Protease from Arthrobacter luteus and Detection of Its Active Amino Acid Residue (Arthrobacter luteus로부터 유래한 염기성 AL-Protease의 효소학적 성질 및 활성 아미노산 잔기의 검색)

  • Oh, Hong-Rock;Aizono, Yasuo;Funatsu, Masaru
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.13 no.2
    • /
    • pp.193-204
    • /
    • 1984
  • The enzymatic properties of the alkaline AL-protease, which had been prepared from the crude zymolyase of Arthrobzoter luteus, was investigated together with its active amino acid residue. Complete inactivaton of the proteolytic activity of AL-protease by either DFP or PMSF was simultaneously accompanied by the loss of its lytic effect on the lysis of yeast cell wall. In the reaction, AL-protease showed the pattern of inactivation to decrease very slowly, as compared to that of chymotrypsin, and that enzyme and DFP were found to react with a molar ratio of 1 : 1. The preparation of AL-protease exhibited no hydrolytic activity in any substrates of polysaccharases, playing a significant role in the lysis of yeast cell wall. The optimum pH and temperature of AL-protease was pH 10.5 and $65^{\circ}C$, respectively. It also showed stability in the pH range from 5 to 11 and at the temperature below $65^{\circ}C$. Through the identification of the amino acid residue in the active site of the $^{32}P$-diisopropylph-osphorylated(DIP) AL-protease modified specifically with $^{32}P$-labeled DFP, AL-protease was found to be a DFP-sensitive which has a mole of active serine residue involved in its proteolytic activity per mole of the enzyme.

  • PDF

Immobilization of Microbial Cells and Or-ganelles by Entrapment with Urethane Prepolymers

  • Jin, Ing-Nyol
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.04a
    • /
    • pp.115.4-116
    • /
    • 1979
  • Acetone-dried cells of Arthrobacter simplex were entrapped in several preparations of hydrophilic urethane prepolymers and their steroid converting ability was examined. SeVeral solvents, such as methanol and propylone glycol, wereeffective for the conversion of hydrocortisone to prednisolone. The stability of the immobilized cells during storage and on repeated reactions was also examined. Thisconvenient entrapping method was also applicable for the immobilization of cellular organelles. yeast peroxisomes. The entrapped peroxi-somessh owed the activities of alcohol oxidase and catalase.

  • PDF

Polymorphism Of A Deep Marine Benthic Bacterium From The Gulf Of Mexico

  • Blanton, W.George;Blanton, Carol J.
    • 한국해양학회지
    • /
    • v.3 no.1
    • /
    • pp.8-15
    • /
    • 1968
  • An interesting bacterium (#271) was isolated from the abyssal plain of the Sigsbee Deep of the Gulf of Mexico. The organism exhibits marked polymorphism (baciloid, coryneform and myceloid morphologies) in response to certain cultural conditions. the organism has been observed undergoing reproduction by transverse fission, fragmentation and arthrospore production. The presence of arthrospores indicates the bacterium is a member of the genus Arthrobacter; however, computed affinity coefficients do not confirm this genus. Until further studies have been completed on this isolate the authors are reluctant to place it in a generic group.

  • PDF