• Title/Summary/Keyword: Arsenic tolerant bacteria

Search Result 5, Processing Time 0.026 seconds

ACC Deaminase Producing Arsenic Tolerant Bacterial Effect on Mitigation of Stress Ethylene Emission in Maize Grown in an Arsenic Polluted Soil

  • Shagol, Charlotte C.;Subramanian, Parthiban;Krishnamoorthy, Ramasamy;Kim, Kiyoon;Lee, Youngwook;Kwak, Chaemin;Sundaram, Suppiah;Shin, Wansik;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.213-216
    • /
    • 2014
  • Arsenic is a known hazardous metalloid not only to the animals but also to plants. With high concentrations, it can impede normal plant growth and cause even death of plants at extremely high levels. A known plant response to stress conditions such as toxic levels of metal (loids) is the production of stress ethylene, causing inhibitory effect on root growth in plants. When the effect of various arsenic concentrations was tested to maize plant, the stress ethylene emission proportionately increased with increasing concentration of As(V). The inoculation of two arsenic tolerant bacteria; Pseudomonas grimonti JS126 and Pseudomonas taiwanensis JS238 having respective high and low 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity reduced stress ethylene emission by 59% and 30% in maize grown in arsenic polluted soils. The result suggested the possible use of Pseudomonas grimonti JS126 for phytoremediation of arsenic polluted soils.

Potential for the Uptake and Removal of Arsenic [As (V) and As (III)] and the Reduction of As (V) to As (III) by Bacillus licheniformis (DAS1) under Different Stresses

  • Tripti, Kumari;Sayantan, D.;Shardendu, Shardendu;Singh, Durgesh Narain;Tripathi, Anil K.
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.3
    • /
    • pp.238-248
    • /
    • 2014
  • The metalloid arsenic (Z = 33) is considered to be a significant potential threat to human health due to its ubiquity and toxicity, even in rural regions. In this study a rural region contaminated with arsenic, located at longitude $85^{\circ}$ 32'E and latitude $25^{\circ}$ 11'N, was initially examined. Arsenic tolerant bacteria from the rhizosphere of Amaranthas viridis were found and identified as Bacillus licheniformis through 16S rRNA gene sequencing. The potential for the uptake and removal of arsenic at 3, 6 and 9 mM [As(V)], and 2, 4 and 6 mM [As(III)], and for the reduction of the above concentrations of As(V) to As(III) by the Bacillus licheniformis were then assessed. The minimal inhibitory concentrations (MIC) for As(V) and As(III) was determined to be 10 and 7 mM, respectively. At 3 mM 100% As(V) was uptaken by the bacteria with the liberation of 42% As(III) into the medium, whereas at 6 mM As(V), 76% AS(V) was removed from the media and 56% was reduced to As(III). At 2 mM As(III), the bacteria consumed 100%, whereas at 6 mM, the As(III) consumption was only 40%. The role of pH was significant for the speciation, availability and toxicity of the arsenic, which was measured as the variation in growth, uptake and content of cell protein. Both As(V) and As(III) were most toxic at around a neutral pH, whereas both acidic and basic pH favored growth, but at variable levels. Contrary to many reports, the total cell protein content in the bacteria was enhanced by both As(V) and As(III) stress.

Artificial induction and isolation of cadmium-tolerant soil bacteria

  • Lee, Sangman
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.2
    • /
    • pp.125-129
    • /
    • 2020
  • Environmental pollution caused by various heavy metals is a serious global problem. To solve this problem, microbial bioremediation of contaminated metals has developed rapidly as an effective strategy when physical and chemical techniques are not suitable. In this study, cadmium (Cd)-tolerant soil bacteria were isolated via artificial induction in laboratory conditions instead of screening bacteria naturally adapted to metal-contaminated soils. Wild-type (WT) bacteria grown in uncontaminated soils were artificially and sequentially adapted to gradually increasing Cd concentrations of up to 15 mM. The resultant cells, named Soil-CdR15, survived at a Cd concentration of 10 mM, whereas WT cells failed to survive with 4 mM Cd on solid media for 2 d. In liquid media containing Cd, the SoilCdR15 cells grew with 15 mM Cd for 7 d, whereas the WT cells could not grow with 5 mM Cd. Both Soil-CdR15 and WT cells removed approximately 35% of Cd at the same capacity from liquid media containing either 0.5 or 1.0 mM Cd over 2 d. In addition to Cd, the Soil-CdR15 cells showed increased resistance to nickel, zinc, and arsenic compared to WT cells. The Soil-CdR cells were identified as Burkholderia sp. by partial sequencing of 16S rRNA. The data presented in this study demonstrate that isolation of heavy metal-tolerant microorganisms via artificial induction in laboratory conditions is possible and may be useful for the application of the microorganisms for the bioremediation of heavy metals.

Reduction of Dissolved Fe(III) by As(V)-tolerant Bacteria Isolated from Rhizosphere Soil

  • Khanal, Anamika;Song, Yoonjin;Cho, Ahyeon;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.67-72
    • /
    • 2021
  • BACKGROUND: Biological iron redox transformation alters iron minerals, which may act as effective adsorbents for arsenate [As(V)] in the environments. In the viewpoint of alleviating arsenate, microbial Fe(III) reduction was sought under high concentration of As(V). In this study, Fe(III)-reducing bacteria were isolated from the wild plant rhizosphere soils collected at abandoned mine areas, which showed tolerance to high concentration of As(V), in pursuit of potential agents for As(V) bioremediation. METHODS AND RESULTS: Bacterial isolation was performed by a series of enrichment, transfer, and dilutions. Among the isolated strains, two strains (JSAR-1 and JSAR-3) with abilities of tolerance to 10 mM As(V) and Fe(III) reduction were selected. Phylogenetic analysis using 16S rRNA genesequences indicated the closest members of Pseudomonas stutzeri DSM 5190 and Paenibacillus selenii W126, respectively for JSAR-1 and JSAR-3. Ferric and ferrous iron concentrations were measured by ferrozine assay, and arsenic concentration was analyzed by ICP-AES, suggesting inability of As(V) reduction whereas ability of Fe(III) reduction. CONCLUSION: Fe(III)-reducing bacteria isolated from the enrichments with arsenate and ferric iron were found to be resistant to a high concentration of As(III) at 10 mM. We suppose that those kinds of microorganisms may suggest good application potentials for As(V) bioremediation, since the bacteria can transform Fe while surviving under As-contaminated environments. The isolated Fe(III)-reducing bacterial strains could contribute to transformations of iron minerals which may act as effective adsorbents for arsenate, and therefore contribute to As(V) immobilization

Effects of Heavy Metal and pH on Bacterial Growth Isolated from the Contaminated Smelter Soil (제련소 인근 토양에서 분리한 박테리아 생장에 미치는 중금속 및 pH 영향)

  • Keum, Mi-Jung;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.113-121
    • /
    • 2015
  • The contaminated soil at abandoned smelter areas present challenge for remediation, as the degraded materials are typically deficient in nutrients, and rich in toxic heavy metals and metalloids. Bioremediation technique is to isolate new strains of microorganisms and develop successful protocols for reducing metal toxicity with heavy metal tolerant species. The present study collected metal contaminated soil and characterized for pH and EC values, and heavy metal contents. The pH value was 5.80, representing slightly acidic soil, and EC value was 13.47 mS/m. ICP-AES analytical results showed that the collected soil samples were highly contaminated with various heavy metals and metalloids such as lead (183.0 mg/kg), copper (98.6 mg/kg), zinc (91.6 mg/kg), and arsenic (48.1 mg/kg), respectively. In this study, a bacterial strain, Bacillus cereus KM-15, capable of adsorbing the heavy metals was isolated from the contaminated soils by selective enrichment and characterized to apply for the bioremediation. The effects of heavy metal on the growth of the Bacillus cereus KM-15 was determined in liquid cultures. The results showed that 100 mg/L arsenic, lead, and zinc did not affect the growth of KM-15, while the bacterial growth was strongly inhibited by copper at the same concentration. Further, the ability of the bacteria to adsorb heavy metals was evaluated.