• Title/Summary/Keyword: Arsenic(III)

Search Result 108, Processing Time 0.021 seconds

Removal of As(III) and As(V) in Aqueous Phases by Fe and Mn Oxides Coated Granular Activated Carbon (철 및 망간 산화물로 코팅된 입자활성탄을 이용한 수용액 중 As(III) 및 As(V)의 제거)

  • Lee, Hee-Yong;Yang, Jung-Seok;Choi, Jae-Young;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.619-626
    • /
    • 2009
  • The objective of this study was to evaluate the efficiency of Fe and Mn oxides coated granular activated carbons (FMOCGs) for the removal of arsenite and arsenate by oxidation and adsorption mechanisms using surface characterization and batch adsorption experiments. Within four manufactured adsorbents, Fe and Mn contents of FMOCG-1 was the highest (178.12 mg Fe/g and 11.25 mg Mn/g). In kinetic results, As(III) was removed by oxidation and adsorption with FMOCGs. Removal of arsenic by FMOCGs increased as pH value of the solution decreased. The adsorption isotherm results were well fitted with Langmuir isotherm. Adsorption amount of As(V) onto FMOCGs was higher than that of As(III) and the maximum adsorption capacities of FMOCGs for As(III) and As(V) were 1.38~8.44 mg/g and 2.91~9.63 mg/g, respectively.

Reduction of Dissolved Fe(III) by As(V)-tolerant Bacteria Isolated from Rhizosphere Soil

  • Khanal, Anamika;Song, Yoonjin;Cho, Ahyeon;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.67-72
    • /
    • 2021
  • BACKGROUND: Biological iron redox transformation alters iron minerals, which may act as effective adsorbents for arsenate [As(V)] in the environments. In the viewpoint of alleviating arsenate, microbial Fe(III) reduction was sought under high concentration of As(V). In this study, Fe(III)-reducing bacteria were isolated from the wild plant rhizosphere soils collected at abandoned mine areas, which showed tolerance to high concentration of As(V), in pursuit of potential agents for As(V) bioremediation. METHODS AND RESULTS: Bacterial isolation was performed by a series of enrichment, transfer, and dilutions. Among the isolated strains, two strains (JSAR-1 and JSAR-3) with abilities of tolerance to 10 mM As(V) and Fe(III) reduction were selected. Phylogenetic analysis using 16S rRNA genesequences indicated the closest members of Pseudomonas stutzeri DSM 5190 and Paenibacillus selenii W126, respectively for JSAR-1 and JSAR-3. Ferric and ferrous iron concentrations were measured by ferrozine assay, and arsenic concentration was analyzed by ICP-AES, suggesting inability of As(V) reduction whereas ability of Fe(III) reduction. CONCLUSION: Fe(III)-reducing bacteria isolated from the enrichments with arsenate and ferric iron were found to be resistant to a high concentration of As(III) at 10 mM. We suppose that those kinds of microorganisms may suggest good application potentials for As(V) bioremediation, since the bacteria can transform Fe while surviving under As-contaminated environments. The isolated Fe(III)-reducing bacterial strains could contribute to transformations of iron minerals which may act as effective adsorbents for arsenate, and therefore contribute to As(V) immobilization

Occurrence and Species of Arsenic in the Groundwater of Ulsan Area (울산지역 지하수중 비소의 산출 및 존재형태)

  • Yun Uk;Cho Byong-Wook;Sung Kyu-Youl
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.657-667
    • /
    • 2004
  • Arsenic was detected in the 29 water samples out of the 46 groundwaters located in the Ulsan metropolitan area and it's concentration ranges from $<0.1\;to\;72{\mu}g/L$. Among them the arsenic concentrations of three samples are over domestic drinking-water requirements $(50{\mu}g/L)$, and those of 10 samples are more than WHO MCLs, $10{\mu}g/L.$. High arsenic groundwater were recognized in the two region; one was near the tectonic line, especially Ulsan iron mine at Dalcheunri and the other was around Hyomundong distributed Jeongia conglomerate. It is estimated that the former is originated from pyrite oxydation type, oxygenated redox, whilst the latter is resulted from oxidation of reducted FeOOH. The species of arsenic in groundwater is in pentavalent arsenic, $H_2AsO_4^-,\;HAsO4_^{-2}$ near tectonic line, and trivalent arsenic, $H_3AsO_3$ around Hyomundong.

Comparison of Total and Inorganic Arsenic Contamination in Grain and Processed Grain Foods (곡류 및 곡류 가공식품의 총비소 및 무기비소 오염 비교)

  • Eun-Jin, Baek;Myung-Gil, Kim;Hyun-Jue, Kim;Jin-Hee, Sung;You-Jin, Lee;Shin-Hye, Kwak;Eun-Bin, Lee;Hye-Jin, Kim;Won-Joo, Lee;Myung-Jin, Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.6
    • /
    • pp.385-393
    • /
    • 2022
  • The contamination level of inorganic arsenic, a human carcinogen, was investigated in 87 grains and 66 processed grain foods. Two inorganic arsenic species arsenite (As(III)) and arsenate (As(V)) and four organic arsenic monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine were analyzed using HPLC-ICP/MS with high separation and sensitivity and ICP/MS was used to quantify total arsenic. Inorganic arsenic was detected in all grains. And the total arsenic in grains consists of about 70-85% inorganic arsenic and about 10-20% DMA. The concentration of inorganic arsenic was high in rice and black rice cultivated in paddy soil with irrigated water, while the miscellaneous grain in field was low. Mean concentration of inorganic arsenic in rice germ, brown rice and polished rice was 0.160 mg/kg, 0.135 mg/kg, 0.083 mg/kg, respectively, indicating that rice bran contains more arsenic. In processed grain foods, inorganic arsenic concentration varied according to the kind of ingredients and content, and the detection amount was high in processed food with brown rice and germ. The arsenic content of all samples did not exceed each standard, but the intake frequency is high and it is considered that continuous monitoring is necessary for food safety.

Lime based stabilization/solidification (S/S) of arsenic contaminated soils

  • Moon, Deok-Hyun
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.12a
    • /
    • pp.51-62
    • /
    • 2004
  • Lime based stabilization/solidification (S/S) can be an effective remediation alternative for the immobilization of arsenic (As) in contaminated soils and sludges. However, the exact immobilization mechanism has not been well established, Based on previous research, As immobilization could be attributed to sorption and/or inclusion in pozzolanic reaction products and/or the formation of calcium-arsenic (Ca-As) precipitates. In this study, suspensions of lime-As were studied in an attempt to elucidate the controlling mechanism of As immobilization in lime treated soils. Aqueous lime-As suspensions (slurries) with varying Ca/As molar ratios (1:1, 1.5:1, 2:1, 2.5:1 and 4:1) were prepared and soluble As concentrations were determined. X-ray diffraction (XRD) analyses were used to establish the resulting mineralogy of crystalline precipitate formation. Depending on the redox state of the As source, different As precipitates were identified. When As (III) was used, the main precipitate formation was Ca-As-O. With As(V) as the source, Ca4(OH)2(AsO4)2${\cdot}$4H2O formed at Ca/As molar ratios greater than 1:1. A significant increase in As (III) immobilization was observed at Ca/As molar ratios greater than 1:1. Similarly, a substantial increase in As (V) immobilization was noted at Ca/As molar ratios greater than or equal to 2.5: 1. This observation was also confirmed by XRD. The effectiveness of both As (III) and As(V) immobilization in these slurries appeared to increase with increasing Ca/As molar ratios.

  • PDF

Growth of GaAs by Chemical Beam Epitaxy Using Unprecracked Arsine and Trimethylgallium

  • Park, Seong-Ju;Ro, Jeong-Rae;Sim, Jae-Ki;Lee, El-Hang
    • ETRI Journal
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 1994
  • Undoped GaAs has been successfully grown by chemical beam epitaxy (CBE) via surface decomposition process using arsine $(AsH_3)$ and trimethylgallium (TMG). Three distinct regions of temperature-dependent growth rates were identified in the range of temperatures from 570 to $690^{\circ}C$. The growth rates were found strongly dependent on the V/III ratio between 5 and 30. The growth rate at low V/III ratio seems to be determined by arsenic produced on the surface, whereas at high V/III ratio it shows dependence on the adsorption of TMG. Hall measurement and photoluminescence (PL) analysis show that the films are all p-type and that carbon impurities are primarily responsible for the background doping. Carbon concentrations have been found to be reduced by two orders of magnitude as compared to those of epilayers grown by CBE which employs TMG and arsenic obtained from precracked $AsH_3$ in a high temperature cell. It was also found that hydrogen atoms dissociated from unprecracked $AsH_3$ play an important role in removing hydrocarbon-containing species resulting in a significant reduction of car-bon impurities.

  • PDF

Characteristics of arsenic sorption on furnace slag in groundwater

  • S. R. Kanel;Saurabh Sharma;Park, Hechul
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.96-98
    • /
    • 2002
  • Furnace slag, a steel industry waste, has been converted into an inexpensive and efficient adsorbent. The product obtained has been utilized for the removal of arsenic from ground water. Kinetic studies have bepn described with the mechanism of adsorption The results from batch studies showed that the As(III) can be removed from the ground water within the pH range 3-7 However the maximum removal was experienced at pH 7.0. Equilibrium was attained within 24 hours. Adsorption data of arsenic correlate well with the Freundlich and Langmuir adsorption models. The maximum sorption capacity as calculated using Freundlich adsorption isotherm was found to be of 0.004 mg g-1 at pH 7 and $25^{\circ}C$.

  • PDF

Characterization of Arsenic Sorption on Manganese Slag (망간슬래그의 비소에 대한 수착특성 연구)

  • Seol, Jeong Woo;Kim, Seong Hee;Lee, Woo Chun;Cho, Hyeon Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.229-244
    • /
    • 2013
  • Arsenic contamination may be brought about by a variety of natural and anthropogenic causes. Among diverse naturally-occurring chemical speciations of arsenic, trivalent (As(III), arsenite) and pentavalent (As(V), arsenate) forms have been reported to be the most predominant ones. It has been well known that the behavior of arsenic is chiefly affected by aluminum, iron, and manganese oxides. For this reason, this study was initiated to evaluate the applicability of manganese slag (Mn-slag) containing high level of Mn, Si, and Ca as an efficient sorbent of arsenic. The main properties of Mn-slag as a sorbent were investigated and the sorption of each arsenic species onto Mn-slag was characterized from the aspects of equilibrium as well as kinetics. The specific surface area and point of zero salt effect (PZSE) of Mn-slag were measured to be $4.04m^2/g$ and 7.73, respectively. The results of equilibrium experiments conducted at pH 4, 7 and 10 suggest that the sorbed amount of As(V) was relatively higher than that of As(III), indicating the higher affinity of As(V) onto Mn-slag. As a result of combined effect of pH-dependent chemical speciations of arsenic as well as charge characteristics of Mn-slag surface, the sorption maxima were observed at pH 4 for As(V) and pH 7 for As(III). The sorption of both arsenic species reached equilibrium within 3 h and fitting of the experimental results to various kinetic models shows that the pseudo-second-order and parabolic models are most appropriate to simulate the system of this study.

Urinary Arsenic Species Concentrations and Related Factors among Residents Living near Abandoned Metal Mines (폐금속광산 지역 주민들의 요 중 비소종별 농도와 관련요인 평가)

  • Surenbaatar, Ulziikhishig;Seo, Jeong-Wook;Kim, Byoung-Gwon;Lim, Hyoun-Ju;Chang, Jun-Young;Lee, Chul-Woo;Cho, Seong-Sik;Son, Hyun-Jin;Hong, Young-Seoub
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.655-666
    • /
    • 2020
  • Objectives: The purpose of this study was to evaluate urinary arsenic concentrations by arsenic species and to identify related factors among local residents near abandoned metal mines in Korea. Methods: Among the subjects of the Health Survey of Residents Near Abandoned Metal Mines for 2013-2017, 664 people were enrolled in this study. Urinary arsenic species analysis was performed using ICP/MS. Result: The geometric means (95% Confidence Interval) by urinary arsenic species were 0.15 (0.13-0.17) ㎍/L for AsIII, 0.64 (0.55-0.75) ㎍/L for AsV, and 1.21 (1.05-1.40) ㎍/L for inorganic arsenic. The geometric means of urinary MMA and DMA were 1.58 (1.35-1.86) ㎍/L and 77.93 (72.61-83.63) ㎍/L, respectively, and that of organic arsenic was 83.15 (77.80-88.88) ㎍/L. The concentration of inorganic arsenic in the group using groundwater as drinking water was 1.36 (1.13-1.64) ㎍/L, which was statistically significantly higher than the 1.00 (0.80-1.25) ㎍/L in the other drinking water groups. Regarding rice consumption, the concentration of inorganic arsenic in urine in the group whose consumption was more than half rice produced in the residential area was 1.32 ㎍/L, which was statistically significantly higher than that of the 1.12 ㎍/L for the group whose consumption was less than half. Conclusion: In the analysis of the factors affecting the urinary inorganic arsenic concentration of the residents of the abandoned metal mine area, the use of groundwater as drinking water and consumption of rice produced in the residential area were considered related factors.

A Probabilistic Risk Assessment for Inorganic Arsenic (무기비소에 의한 확률론적 위해도 평가)

  • 유동한;하재주
    • Environmental Analysis Health and Toxicology
    • /
    • v.13 no.3_4
    • /
    • pp.95-104
    • /
    • 1998
  • INTRODUCTION : Arsenic is a ubiquitous element present in various compounds throughout the earth's crust. The use of arsenic compounds increased greatly during the 18th and 19th centuries, including its use in pigments and dyes, as a preservative of animal hides, in glass manufacture, agricultural pesticides, and various pharmaceutical substances. The causal association between human arsenic exposure, usually in the form of inorganic compounds containing trivalent arsenite (As$^{III}$) or pentavalent arsenate (As$^V$), and various forms of human cancer has been known for many years.

  • PDF