• Title/Summary/Keyword: Arrival Interval

Search Result 115, Processing Time 0.024 seconds

Performance Analysis of Synchronization Protocols for Underwater Acoustic Networks (수중 장거리 네트워크를 위한 동기화 프로토콜 성능분석)

  • Cho, A-ra;Lim, Yong-kon;Choi, Youngchol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.68-71
    • /
    • 2018
  • In this paper, we propose a synchronization protocol for underwater acoustic networks which aims to minimize the effects of long propagation delay and uncertain delay variations and employs packet train scheme with considering low data rate. The proposed protocol uses an one-way delay measurement method by transmitting consecutive packets and acquires synchronization only considering propagation delay variations by calculating packet arrival time differences. We perform simulations under various network conditions, such as node mobility, time interval for packet transmission, network range, and elapsed time after synchronizing. The simulation results shows the superiority of our protocol, compared with a previously proposed protocol.

  • PDF

A Clustering Technique of Radar Signals using 4-Dimensional Features (4차원 특징 벡터에 의한 레이더 신호 클러스터링 기법)

  • Lee, Jong-Tae;Ju, Young-Kwan;Kim, Gwan-Tae;Jeon, Joong-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.137-144
    • /
    • 2014
  • The Electronic Support System collects and analyzes the received radar signals in order to cope with the electronic attack in real-time. The radar-pulse clustering system classifies the radar signals that are considered to be emitted by a single source. This paper proposed a radar-pulse clustering algorithm based on four kinds of features: the direction, frequency, pulse width, and the difference of arrival time between two successive pulses. The experiment results show that the proposing algorithm could trace the moving emitter and classify the timely separated signals into different classes.

Estimation Method of Single Stagger PRI and Future TOA for Active Cancellation (단일 스태거 PRI의 추정 및 능동 상쇄를 위한 예상 도착 시간 추정 기법)

  • Lim, Seongmok;Sim, Dongkyu;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.34-41
    • /
    • 2014
  • Through applying hostile radar signals that use stagger PRI to PRI transform in real time, we can analyze stagger PRI and calculate the future TOA for active cancellation by using measured TOA and estimated PRI. We shows the effect of the errors that are contained in PRI and measured TOA. Then, it will suggest the technique to improve the accuracy of estimated PRI and the TOA averaging method for reducing the effect of measured TOA error. Finally, we will show that accuracy of estimated future TOA that is calculated by proposed scheme is higher than that of future TOA that is simply calculated with TDOA and newest TOA through comparing RMSE performance.

Dimensioning leaky bucket parameters considering the cell delay variation (셀 지연 변이를 고려한 리키 버킷 계수 결정 방법)

  • 이준원;이병기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.31-38
    • /
    • 1995
  • In this paper, we consider the leaky bucket parameter dimensioning problem in the presence of the cell delay variation(CDV) which arises at the customer premises network dud to the multiplexing with other traffic streams. We consider an ATM multiplexer in which a single CBR stream and several heterogeneous VBR traffic streams are multiplexed. Choosing an MMPP model for the bursty traffic streams, we derive an (MMPP+DD)/D/1/K queueing model for the evaluation of the CDV experienced by the CBR stream. We first evaluate the equilibrium queue length distribution embedded at tagged-cell arrival-time instants, based on whcih we calcuate the inter-cell time distribution and the distribution kof the number of tagged-cell departures in an arbitrary interval. Then we apply the analysis to the dimensionging problem of the leaky bucket parameters, examining how the employed traffic model affects the determination of the bucket size. Through numerical examples, we confirm that the Poisson traffic model can underestimate the bucket size, thus causing a considerable blocking probability for compliant use cells while the MMPP model can optimally design the bucket size which keeps the blocking probability under the target value.

  • PDF

Source Localization of Single Impact Based on Higher Order Time Frequency (고차-시간 주파수 기술을 이용한 평판에서의 충격 위치추적)

  • Moon, Yoo-Sung;Lee, Sang-Kwon;Yang, Hong-Goon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.129-136
    • /
    • 2011
  • The aim of this paper is to present the method of identifying the impact location on the plate. This basic research has the future purpose to achieve the human-interaction technology based on the signal processing, piezoelectric materials, and wave propagation. The present work concerning the location identification of a single impact on the plate simulated the waveform numerically generated by impact force and applied the SWFOM(sliced Wigner higher fourth order moment) to the waveform to get the arrival time differences due to impact force between three sensors attached to the plate. The simulated signal is useful to get the information for time interval for the only direct wave. This information is used the source localization by using experimental work. The measured signal is also used for source localization of a single impact based on the higher order time frequency as a novel work.

A Deterministic Back-off Algorithm for Wireless Networks

  • Jin Jung-woo;Kim Kyung-Jun;Kim Dong-hwan;Lee Ho-seung;Han Ki-jun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.310-312
    • /
    • 2004
  • Binary Exponential Back-off (BEB) scheme is widely adopted in both wire and wireless networks for collision resolution. The BEB suffers from several performance drawbacks including long packet delay and low utilization since it doubles the back-off size after each collision. In addition, operation of the BEB algorithm may lead to the last-come-first-serve result among competing users and the BEB is further unstable for every arrival rate greater than 0 due to its random access property[1,2]. In this paper, we propose a deterministic back-off algorithm to reduce contention interval as much as possible for accessing the channel without collision in the back-off process. Simulation results show that our scheme offers a higher throughput as well as a lower packet transfer delay than the BEB by taking advantage of its lower collision ratio in saturation state.

  • PDF

Multi-Frequency Crosswell Seismic Experiment (다중 주파수 송신원에 의한 공대공 탄성파 실험)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.223-228
    • /
    • 2007
  • First arrival signals of multi-frequency crosswell seismic data, acquired in wells drilled in granitic rock, were analyzed to investigate the characteristic behavior of the signals at the shear zones. Dominant frequencies of the sources were; 10-, 20-, 40-, 56-, and 80 kHz. No obvious changes in the waveform at the shear zones were found; however, at the shear zones, some degree of velocity reductions were observed in the signals of all frequency sources. The 80 kHz signal is slightly faster than 10 kHz signal in the survey region, and the velocity difference between the two signals were found largest at the shear zone where the permeability measured greatest in the survey interval.

Study on the Appropriate Time for Leading Pedestrian Intervals (보행자 우선 출발신호의 적정 시간 산출 연구)

  • Kim, Daekyung;Yoon, Suyoung;Yoon, Jinsoo;Kim, Sang-Ock;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • When pedestrians cross a pedestrian crossing during a pedestrian signal, there is a problem that pedestrians are exposed to the danger of traffic accidents due to permissive-left turning and right-turning vehicles. In order to solve this problem, there is an increasing demand to improve the traffic signal system to increase pedestrian safety at the signal crossing. This study aims to examine the feasibility of introducing a leading pedestrian interval(LPI) to prevent conflict between unprotected left and right turn vehicles and pedestrians. In this study, the need for LPI was surveyed by experts and the general public. As a result of the survey, many opinions indicated that the introduction of LPI was necessary. In addition, after selecting the non-protected left and right turn pilot operation targets, LPI was installed on two signal intersections. After installation, the speed analysis of the arrival vehicle in the pedestrian crossing and the violation rate of the pedestrian signal were analyzed. As a result of analysis, when the walking signal was equalized, the speed of the arriving vehicle in the pedestrian crossing was reduced, and the violation rate of the walking signal was improved.

Factors Affecting the Delay of a Decision to Admit Severe Trauma Patients and the Effect of a Multidisciplinary Department System: a Preliminary Study (중증 외상 환자의 입원 결정 지연에 영향을 미치는 요인과 공동진료시스템)

  • Kang, Mun-Ju;Shin, Tae-Gun;Sim,, Min-Seob;Jo, Ik-Joon;Song, Hyoung-Gon
    • Journal of Trauma and Injury
    • /
    • v.23 no.2
    • /
    • pp.113-118
    • /
    • 2010
  • Purpose: Prolonged stay in the emergency department (ED), which is closely related with the time interval from the ED visit to a decision to admit, might be associated with poor outcomes for trauma patients and with overcrowding of the ED. Therefore, we examined the factors affecting the delay in the decision to admit severe trauma patients. Also, a multidisciplinary department system was preliminarily evaluated to see if it could reduce the time from triage to the admission decision. Methods: A retrospective observational study was conducted at a tertiary care university hospital without a specialized trauma team or specialized trauma surgeons from January 2009 to March 2010. Severe trauma patients with an International Classification of Disease Based Injury Severity Score (ICISS) below 0.9 were included. A multivariable logistic regression analysis was used to find independent variables associated with a delay in the decision for admission which was defined as the time interval between ED arrival and admission decision exceeded 4 hours. We also simulated the time from triage to the decision for admission by a multidisciplinary department system. Results: A total of 89 patients were enrolled. The average time from triage to the admission decision was $5.2{\pm}7.1$ hours and the average length of the ED stay was $9.0{\pm}11.5$ hours. The rate of decision delay for admission was 31.5%. A multivariable regression analysis revealed that multiple trauma (odds ratio [OR]: 30.6, 95%; confidence interval [CI]: 3.18-294.71), emergency operation (OR: 0.55, 95%; CI: 0.01-0.96), and treatment in the Department of Neurosurgery (OR: 0.07, 95%; CI: 0.01-0.78) were significantly associated with the decision delay. In a simulation based on a multidisciplinary department system, the virtual time from triage to admission decision was $2.1{\pm}1.5$ hours. Conclusion: In the ED, patients with severe trauma, multiple trauma was a significant factor causing a delay in the admission decision. On the other hand, emergency operation and treatment in Department of Neurosurgery were negatively associated with the delay. The simulated time from triage to the decision for admission by a multidisciplinary department system was 3 hours shorter than the real one.

Seismic Velocity Structure Along the KCRT-2008 Profile using Traveltime Inversion of First Arrivals (초동주시 역산을 통한 KCRT-2008 측선 하부의 지진파 속도구조)

  • Kim, Ki-Young;Lee, Jung-Mo;Baag, Chang-Eob;Jung, Hee-Ok;Hong, Myung-Ho;Kim, Jun-Yeong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.153-158
    • /
    • 2010
  • To investigate the velocity structure in the central and southern parts of the Korean peninsula, a 299-km NW-SE seismic refraction profile KCRT-2008was obtained across major tectonic boundaries. Seismic waves were generated by detonating 250 ~ 1500 kg explosives at depths of 50 ~ 100 m in eight drill holes located at intervals of 21 ~ 113 km. The seismic signals were detected by 4.5 Hz geophones at a nominal interval of 500 m. The first-arrival times were inverted to derive a velocity tomogram. The raypaths indicate several mid-crust interfaces including those at approximate depths of 2 ~ 3, 11 ~ 13, and 20 km. The Moho discontinuity with refraction velocity of 7.7 to 8.1 km/s has a maximum depth of 34.5 km under the central portion of the peninsula. The Moho becomes shallower as the Yellow Sea and the East Sea are approached on the west and east coasts of the peninsula, respectively. The depth of the 7.6 km/s velocity contour varies from 31.3 km to 34.4 km. The velocity tomogram shows the existence of a 129 km wide low-velocity zone centered at 7.2 km depth under the Okchon fold belt and Gyeonggi massif and low-velocity(< 5.4 km/s) rocks in the Gyeongsang sedimentary basin with a maximum thickness of 2.6 km