• Title/Summary/Keyword: Arrhenius activation

Search Result 345, Processing Time 0.029 seconds

Mathematical Simulation of the Temperature Dependence of Time Temperature Integrator (TTI) and Meat Qualities (육류의 품질과 Time Temperature Integrator(TTI) 온도의존성에 대한 수학적 Simulation)

  • Park, Han-Jo;Shim, Soo-Dong;Min, Sang-Gi;Lee, Seung-Ju
    • Food Science of Animal Resources
    • /
    • v.29 no.3
    • /
    • pp.349-355
    • /
    • 2009
  • The temperature dependence of time temperature integrator (TTI) was investigated in terms of the Arrhenius activation energy (Ea) to determine TTI requirements to accurately predict meat quality during storage. Mathematical simulation was conducted using a numerical analysis. First, using Euler's method and MS Excel VBA, the TTI color change was kinetically modeled and numerically calculated under several storage conditions. From the TTI color variable profiles calculated from the storage time-temperature profiles, $T_{eff}$, which is a constant temperature representing the whole temperature profiles, was calculated. Upon predicting Pseudomonas spp. concentrations (one of the meat qualities) from $T_{eff}$, it was found that if $Ea_{microbial\;spoilage}=Ea_{TTI}$ be true, then Pseudomonas concentrations were calculated to be constant with the same TTI color values, regardless of time-temperature profiles, whereas if $Ea_{microbial\;spoilage}{\neq}Ea_{TTI}$ then Pseudomonas concentrations varied even with the same TTI color values. This indicates that each TTI color value represents its own fixed degree of meat quality, only if $Ea_{meat\;qualities}=Ea_{TTI}$.

Effect of Temperature on the Deposition Rate and Bending Strength Characteristics of Chemical Vapor Deposited Silicon Carbide Using Methyltrichlorosilane (메틸트리클로로실란을 이용한 화학증착 탄화규소의 증착율 및 굽힘강도 특성에 미치는 온도의 영향)

  • Song, Jun-Baek;Im, Hangjoon;Kim, Young-Ju;Jung, Youn-Woong;Ryu, Hee-Beom;Lee, Ju-Ho
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • The effects of deposition temperature on chemical vapor deposited silicon carbide (CVD-SiC) were studied to obtain high deposition rates and excellent bending strength characteristics. Silicon carbide prepared at $1250{\sim}1400^{\circ}C$ using methyltrichlorosilane(MTS : $CH_3SiCl_3$) by hot-wall CVD showed deposition rates of $95.7{\sim}117.2{\mu}m/hr$. The rate-limiting reaction showed the surface reaction at less than $1300^{\circ}C$, and the mass transfer dominant region at higher temperature. The activation energies calculated by Arrhenius plot were 11.26 kcal/mole and 4.47 kcal/mole, respectively. The surface morphology by the deposition temperature changed from $1250^{\circ}C$ pebble to $1300^{\circ}C$ facet structure and multi-facet structure at above $1350^{\circ}C$. The cross sectional microstructures were columnar at below $1300^{\circ}C$ and isometric at above $1350^{\circ}C$. The crystal phases were all identified as ${\beta}$-SiC, but (220) peak was observed from $1300^{\circ}C$ or higher at $1250^{\circ}C$ (111) and completely changed to (220) at $1400^{\circ}C$. The bending strength showed the maximum value at $1350^{\circ}C$ as densification increased at high temperatures and the microstructure changed from columnar to isometric. On the other hand, at $1400^{\circ}C$, the increasing of grain size and the direction of crystal growth were completely changed from (111) to (220), which is the closest packing face, so the bending strength value seems to have decreased.

Kinetic Studies on the Thermal Degradation of Ginsenosides in Ginseng Extract (Ginsenosides의 처리온도(處理溫度) 및 시간(時閭)에 따른 반응속도론적(反應速度論的) 연구(硏究))

  • Choi, Jin-Ho;Kim, Doo-Ha;Sung, Hyun-Soon;Kim, Woo-Jung;Oh, Sung-Ki
    • Korean Journal of Food Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.197-202
    • /
    • 1982
  • Kinetic study for the thermal degradation of ginsenosides in ginseng extract was conducted. The results indicate that the thermal degradation followed first order kinetics and rate constants varied substantially depending on the types of ginsenosides and heat treatment temperatures. Activation energy calculated by Arrhenius plots ranged from 16.80 kcal/mole to 30.10 kcal/mole and $Q_{10}$ values ranged from 2.01 to 3.49. Correlation coefficients between the change of ginsenoside contents by thermal degradation and heat treatment temperature were $0.995{\sim}0.999$. The dependence on temperatures of the decomposition rate constant of total ginsenoside can be expressed as $k=4.574{\times}10^8$ exp(8898.8/T).

  • PDF

Effect of Temperature on Amino-Carbonyl Reaction (Amino-Carbonyl 반응(反應)에 미치는 온도(溫度)의 영향(影響))

  • Kim, Yong-Nyun;Kim, Chang-Mok;Han, Kang-Wan;Oh, Sung-Ki
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.11 no.1
    • /
    • pp.51-56
    • /
    • 1982
  • The thermal degradation of 0.05M glucose-arginine model system was occurred during heat treatment for 0$\sim$7 hours at $60{\sim}120^{\circ}C$. and the melanoid in formation was investigated as a function of temperature. The decomposition reaction of glucose and arginine, as well as the reaction of melanoidin formation, followed first-order kinetics, except the reaction at $120^{\circ}C$. and the rate constants ($hr^{-1}\times 10^3$) of those reactions were ranged from 14.20 to 837. 10. Temperature dependence of the rate constants was characterized by the Arrhenius equation, except the reaction at $120^{\circ}C$. The ranges of activation energy and $Q_{10}$ values were 12.122$\sim$18.142 kcal/mole and 1.65$\sim$2.12, respectively.

  • PDF

Rheological Properties of ${\beta}-Glucan$ Isolated from Non-waxy and Waxy Barley (메성 및 찰성보리 ${\beta}-Glucan$의 리올로지 특성)

  • Choi, Hee-Don;Park, Yong-Gon;Jang, Eun-Hee;Seog, Ho-Moon;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.590-597
    • /
    • 2000
  • The rheological properties of ${\beta}-glucans$ isolated from non-waxy and waxy barley were investigated. ${\beta}-Glucan$ solutions showed pseudoplastic properties and their behaviors were explained by applying Power law model in the range of concentrations$(1{\sim}4%)$ and temperatures$(20{\sim}65^{\circ}C)$. The effects of temperature and concentration on the apparent viscosity at $700\;s^{-1}$ shear rate were examined by applying Arrhenius equation and power law equation, and their effect was more pronounced in waxy ${\beta}-glucan$ solutions. The activation energy for flow of ${\beta}-glucan$ solutions decreased with the increase of concentration, and the concentration-dependent constant A increased with the increase of temperature. The intrinsic viscosity of waxy ${\beta}-glucan$ was higher than that of non-waxy ${\beta}-glucan$. The transition from dilute to concentrate region occurred at a critical coil overlap parameter $C^*[{\eta}]=0.02.$ The slopes of non-waxy and waxy ${\beta}-glucan$ at $C[{\eta}] were similar, but the slope of waxy ${\beta}-glucan$ at $C[{\eta}]>C^*[{\eta}]$ was higher than that of non-waxy ${\beta}-glucan$. Dynamic viscoelasticity measurement showed that cross-over happened, and storage modulus was higher than loss modulus at frequency range above cross-over. ${\beta}-Glucan$ solutions formed weak gels after stored for 24 hr.

  • PDF

Catalytic Wet Oxidation of Azo Dye Reactive Black 5 (아조염료 Reactive Black 5 폐수의 촉매습식산화)

  • Suh, Il-Soon;Yoo, Shin-Suk;Ko, Mi-So;Jeong, Samuel;Jung, Cheol-Goo;Hong, Jeong-Ah;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.259-267
    • /
    • 2010
  • The catalytic wet oxidations of the wastewater containing azo dye Reactive Black 5(RB5) with heterogeneous catalyst of CuO have been carried out to investigate the effects of temperature($190{\sim}230^{\circ}C$) and catalyst concentration(0.00~0.20 g/l) on the removals of colour and total organic carbon TOC. The wastewater colour was measured with spectrophotometer, and the oxidation rate was estimated with TOC. About 90% of colour was removed during 120 min in thermal degradation of the RB5 wastewater at $230^{\circ}C$, while TOC was not removed at all. As increasing reaction temperature and catalyst concentration, the removal rates of colour and TOC increased in the catalytic wet oxidations of RB5 wastewater. The effects of catalyst were already considerable even at 0.01 g CuO/l, while the removal rates of colour and TOC increased negligibly with increasing the catalyst concentration above 0.05 g CuO/l. The initial destruction rates of the wastewater colour have shown the first-order kinetics with respect to the wastewater colour. TOC changes during catalytic wet oxidations have been well described with the global model, in which the easily degradable TOC was distinguished from non-degradable TOC of the wastewater. The impacts of reaction temperature on the destruction rate of the wastewater colour and TOC could be described with Arrhenius relationship. Activation energies of the colour removal reaction in thermal degradation, wet oxidation, and catalytic wet oxidation(0.20 g CuO/l) of the RB5 wastewater were 108.4, 78.3 and 74.1 kJ/mol, respectively. The selectivity of wastewater TOC into the non-degradable intermediates relative to the end products in the catalytic wet oxidations of RB5 wastewater was higher compared to that in phenol wet oxidations.

A Study on the Sol-Gel Reaction Kinetics of Sodium Silicate Solution (규산(硅酸)나트륨 수용액(水溶液)의 솔-젤 반응속도론적(反應速度論的) 고찰(考察))

  • Kim, Chul-Joo;Yoon, Ho-Sung;Jang, Hee-Dong
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.34-42
    • /
    • 2008
  • The properties of sodium silicate solution were surveyed by using the yellow silicomolybdic method, and the formation of silica sol from sodium silicate solution and the growth of silica sol were investigated in this study. The $SiO_2$ content of 2 wt% in sodium silicate solution was proper to oxidize sodium silicate with sulfuric acid. After the removal of sodium ions in sodium silicate solution, the pH of silicate solution had to be controlled above 9 for the stabilization of silicate solution. The condensation between silicic acid species and silica nuclei surfaces has been studied at $20{\sim}80^{\circ}C$ and pH 10 in silicate solutions with silica nuclei. The reaction falls into two kinetics regimes, limited at high silicic acid species concentration by polymerization, but at lower concentration by a process whereby deposited silicic acid species condenses further to silica. The overall condensation is first-order in silicic acid species concentration, proceeded toward to pseudo equilibrium concentration, $C_x$, rather than the solubility of amorphous silica. The heat of solution of amorphous silica was 3.34 kcal/mol and exhibits an Arrhenius temperature dependence with an apparent activation energy of 3.16 kcal/mol in the range of $20{\sim}80^{\circ}C$.

Characteristics and Action Pattern of Alkaline Protease from Streptomyces gviseus HC-1141 (Streptomyces griseus HC-1141이 생성하는 Alkaline Protease의 특성 및 작용양상)

  • Choi, Cheong;Chung, Yung-Gun;Sung, Sam-Kyung;Choi, Kwang-Soo;Lee, Jae-Sung;Cho, Young-Je;Chun, Sung-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.3
    • /
    • pp.295-301
    • /
    • 1992
  • An alkaline protease producing microorganism was isolated from soil and identified as Streptomyces griseus HC-1141. The optimum pH and temperature for the purified enzyme activity were 8.0 and $60^{\circ}C$, respectively. The enzyme was relatively stable in the pH range of 7.0-9.0 and at the temperature below $60^{\circ}C$. The activity of purified enzyme was inhibited by $Hg^{2+}$, $Cu^{2+}$, $Zn^{2+}$, $Ba^{2+}$ and $Fe^{2+}$, whereas activated by $Mn^{2+}$ and $Ca^{2+}$. $\varepsilon$-Amino caproic acid, 2,4-dinitrophenol and iodine did not show inhibitory effect on the activity of alkaline protease, but p-chloromercuribenzoic acid, ethylendiaminetetraacetic acid showed inhibitory effect on the enzyme activity. These result suggested that the protease was metalloenzyme, and require a reactive SH group for the activity. The reaction of this enzyme follows typical Michaelis-Menten kinetics with the $K_m$ value of $2.229{\times}10^{-4}$M and the $V_{max}$ of $46.08 {\mu}$g/min for casein. The activation energy for the alkaline protease calculated by Arrhenius equation was 3.643 kcal/mol. This enzyme hydrolyzed casein more rapidly than the hemoglobin and egg albumin.

  • PDF

Prediction of Setting Time of Concrete Using Fly Ash and Super Retarding Agent (초지연제 및 플라이애쉬를 사용한 콘크리트의 응결시간 예측)

  • Han, Min-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.759-767
    • /
    • 2006
  • This paper presents a method to estimate the setting time of concrete using super retarding agent(SRA) and fly ash(FA) under various curing temperature conditions by applying maturity based on equivalent age. To estimate setting time, the equivalent age using apparent activation energy($E_a$) was applied. Increasing SRA content and decreasing curing temperature leads to retard initial and final set markedly. $E_a$ at the initial set and final set obtained by Arrhenius function showed differences in response to mixture type. It is estimated to be from $24{\sim}35KJ/mol$ in all mixtures, which is smaller than that of conventional mixture ranging from $30{\sim}50KJ/mol$. Based on the application of $E_a$ to Freisleben-Hansen and Pederson's equivalent age function, equivalent age is nearly constant, regardless of curing temperature and SRA contents. This implies that the concept of maturity is applicable in estimating the setting time of concrete containing SRA. A high correlation between estimated setting time and measured setting time is observed. Multi-regression model to determine appropriate dosage of SRA reflecting FA contents and equivalent age was provided. Thus, the setting time estimation method studied herein can be applicable to the concrete containing SRA and FA in construction fields.

Changes in Available Lysine and Extractable Nitrogen, and Extent of Browning during the Storage of Dried Fish Meat (건어육저장중의 유효 Lysine 및 Ex분질소의 변화와 갈변)

  • LEE Kang-Ho;SONG Dong-Suck;You Byeong-Jin;KIM Mu-Nam
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.271-282
    • /
    • 1982
  • The browning development, mainly through the Maillard reaction, occurring in the dried fish meat products during storage causes reduction of the nutritional value due to the loss of the essential amino acid such as available lysine as well as off -flavor resulting in the deterioration of the food quality thus shortening the shelflife. In the work, the changes in the amount of available lysine, extractable nitrogenous compounds (nonprotein-N, amino-N, trimethylamine oxide, trimethylamine, and free lysine) and development of browning were measured to assess the relationship between the shelflife and the quality loss in dried filefish under the steady state conditions (35,45, and $55^{\circ}C;a_{w}'s$ of 0.44 0.52, 0.65 and 0.75 at each temperature) and fluctuating temperature condition of $35/55^{\circ}C$ will. alternating 7 day periods at each water activity. The results indicated that the amount of available lysine and extractable nitrogenous compounds except TMA decreased rapidly with increasing temperatures and water activities while the rate of available lysine and extractable nitrogenous compounds must be involved in the initial stage of brown pigment formation. The available lysine loss of the dried filefish products stored under the fluctuating temperature conditions was greater than that stored under its fixed mean temperature, $45^{\circ}C$. The activation energies for lysine loss obtained from the Arrhenius plot ranged 6.9 to 4.4 Kcal/mol and $Q_{10}$ values at $40^{\circ}C$ were 1.4 to 1.2. The values for browning were 15.7 to 14.4 Kcal/mol and 2.2 to 2.0 respectively. Shelf-life, defined as the time to reach 0.15 O. D./g solid or the limit of off-color deterioration by browning reaction, was extented longer than the halflife of Iysine loss, actually corresponding $75\%$ loss of available lysine. This suggested that the halflife of lysine loss might not be adequate to assess the shelf-life of the food system with high potential of protein, nonproteinous nitrogen compounds, and lipids.

  • PDF