• Title/Summary/Keyword: Aromatic polyamide

Search Result 23, Processing Time 0.02 seconds

Effects of the Nitrile Group Substitution on the Gas Separation Properties of Aromatic Polyamide Membranes

  • Park, Ho-Seung;Jo, Won-Ho;Oh, Tae-Jin;Kang, Yong-Soo;Park, Hyun-Chae
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 2000
  • The effects of nitrile group substitution onto aromatic polyamide backbone on the gas permeability and permselectivity of the polymers are examined. The gas permeability of aromatic polyamides increase with increasing the content of nitrile group substitution, whereas the permselectivity decreases with increasing the nitrile group contents. The effects of chain linrearity on the permeability and permselectivity are also examined. The non-linearity of the polymers increases the permeability. These behaviors are interpreted in terms of chain packing and crystallinity of the aromatic polyamides.

  • PDF

Sustained Drug Release of Polyamide Microcapsules (Polyamide Microcapsule의 성질과 서방성)

  • 김계용;김진홍
    • Journal of Biomedical Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.135-144
    • /
    • 1987
  • Polyamide microcapsules were designed for a sustained drug release. As a model, riboflavin was e no apsulated in polyamide microcapsules. Polyamide microcapsules were prepared from thiamines and acid bichlorides by the interfacial polycondensation reaction. The diamines used in ttlis works were ethylenediamine and 1, 6-hexamethylenediamine. Sebacoylchloride and teruphthaloylchloride were employed as acid bichlorides. The following parameters were studied; the release of several kinds of polyamide microcapsules , the various concentrations of diamines and acid dichlorides ; the various concentrations of surfactants : the various pH range of sink solution during the dissolution test. The release amount of riboflavin from aromatic polyamide micrcapsule was higher than that of aliphatic polyamide microcapsule The release rate of riboflavin from the polyamide microcapsule was decreased with increase of concentration of thiamines, arid dichlorides and surfactants which is used for preparing polyamide microcapsule. Release riboflavin from polyamide microcapsule was lower at pH 7 than pH 2 in sink-solution for dissolution test.

  • PDF

Synthesis and Physical Properties of Hyperbranched Aromatic Polyamide (고차가지구조 방향족 폴리아미드의 합성 및 물성)

  • Ok Chang-Yul;Kim Jang-Yup;Huh Wansoo;Lee Sang-Won
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.571-574
    • /
    • 2005
  • The aromatic hyperbranched polyamide was synthesized from 5-aminoisophthalic acid by direct polycondensation with triphenylphosphite (TPP) catalyst as a condensing agent. The modification of end-groups in the resulting hyperbranched polymer (HBP) with various alkyl alcohols were conducted. The modification of end-groups of HBP by alkyl groups resulted in an improved solubility in the THF comparing to that of the carboxylic acid-terminated aromatic HBP, Also, 10 wt$\%$ weight loss temperature decreased by increasing the length of alkyl group.

Synthesis and Characterization of Aromatic Polyamideamide-imide and Polyamide-imide copolymers

  • Kim, Sang-Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.144-150
    • /
    • 2008
  • The polyamide-amide-imide (PAAI) was synthesized by reacting 4,4'-diaminobenzanilide (DBA) with trimellitic anhydride chloride using a two-stage heating. The precursor of polyamide-acids was formed at first stage and followed by the formation of imide of PAAI. Two polyamide-imides (PAIs) were prepared from benzidine (BZ) or 4,4'-diaminodiphenylether (DPE) with trimellitic anhydride chloride. These three polymers had glass transition temperature in the temperature range of $240-250^{\circ}C$. X-ray data were obtained on thin film specimens cured at $250^{\circ}C$. There was a minimal kind of short-range order consisting of the most probable distances between neighboring chains. The average segmental spacing of short-range order decreased in the order of polymers obtained from 4,4'-diaminobenzanilide (DBA), polyamide-imide, and 4,4'-diaminodiphenylether (DPE). The imidization of three polyamide-imides was confirmed by $^{15}N$ MAS NMR and FT-IR spectroscopy. $^{15}N$ NMR spectrum of cured polyamide-imide showed imide $^{15}N$ peak, thereby providing an evidence for the imidization of three polyamide-imides.

Synthesis and Characterization of Polyamides and Polyester Prepareds by Palladium-catalyzed CO Insertion Reaction (고강도 엔지니어링 플라스틱재료의 합성 - I. Palladium-catalyzed CO Insertion 반응에 의한 전방향족 Polyamides와 Polyester의 합성 -)

  • Jun, Chang Lim;Park, Sang Bok;Park, Nae Joung;Yum, Sung Bai
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.694-700
    • /
    • 1992
  • Aromatic polyamides and polyesters with fexible spacers are prepared by Heck reaction with palladium catalysts In presence of carbon monoxide gas. Dichlorobis(triphenyl phosphine) plladium(II) ($PdCl_2(PPh_3)_2$) and palladium chloride ($PbCl_2$) are used as catalysts. Polyamides and polyesters prepared by his polymerization system have similar transition temperatures. Flexible spacer substituted on phenylene units are varied from hexyl to hexadecyl, the length of spacers effected on transition temperatures of substituted polymers.

  • PDF

Synthesis and Characterization of Dimer Acid-Based Polyamides (다이머산계 폴리아미드의 합성 및 특성에 관한 연구)

  • Park, Hyun Ju;Jeon, Ho Kyun;Oh, Sang Taek
    • Journal of Adhesion and Interface
    • /
    • v.17 no.4
    • /
    • pp.136-140
    • /
    • 2016
  • In this study, a series of dimer acid-based polyamides with different diamines were synthesized by condensation polymerization and the polyamides were characterized by Fourier transform infrared spectroscopy (FT-IR). Effects of diamine structures on mechanical and thermal properties of polyamides were investigated. The tensile strength and lap shear adhesion strength of aromatic-based polyamide (DAP) were higher than those of aliphatic-based polyamide (DAH). In DSC thermogram, DAP has a high $T_g$ and $T_m$ compared with DAH. DAP's and DAH's softening point were $112-115^{\circ}C$ and $98-121^{\circ}C$, respectively.