• Title/Summary/Keyword: Aromatic plant

Search Result 194, Processing Time 0.023 seconds

Antithrombotic Activity of Extracts from the Aromatic Herb Elsholtzia splendens

  • Kim, Won Shik;Lim, Yong
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.277-280
    • /
    • 2017
  • Elsholtzia splendens, which grows on moist soil of mountainous regions, is widely distributed at all regions of Korea, especially at Mountain Ji ri. It is categorized as a Labiatae plant which is dried aerial part. It has the following medicinal properties; removal of fever, alleviation of pain, a good antiphlogistic agent as well as antibacterial effects. However, the effects of E. splendens on thrombosis and platelet activation are not precisely understood. We performed this study to develop antithrombotic agents from oriental medicine herb extracts. E. splendens inhibited platelet aggregation induced by arachidonic acid and U46619 in a concentration dependent manner. E. splendens did not show an effect on anticoagulation as determined by prothrombin time (PT) or activated partial thromboplastin time (aPTT). We also tested the effects of E. splendens using a carotid artery thrombosis rat model induced by 35% $FeCl_3$ treatment. E. splendens significantly inhibited thrombus weight compared with the control group. These results show that E. splendens may be developed as a potential antiplatelet activity agent for treatment of cardiocerebrovascular disease and atherosclerosis.

Amygdalin Regulates Apoptosis and Adhesion in Hs578T Triple-Negative Breast Cancer Cells

  • Lee, Hye Min;Moon, Aree
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.62-66
    • /
    • 2016
  • Amygdalin, D-mandelonitrile-${\beta}$-D-glucoside-6-${\beta}$-glucoside, belongs to aromatic cyanogenic glycoside group derived from rosaceous plant seed. Mounting evidence has supported the anti-cancer effects of amygdalin. However, whether amygdalin indeed acts as an anti-tumor agent against breast cancer cells is not clear. The present study aimed to investigate the effect of amygdalin on the proliferation of human breast cancer cells. Here, we show that amygdalin exerted cytotoxic activities on estrogen receptors (ER)-positive MCF7 cells, and MDA-MB-231 and Hs578T triple-negative breast cancer (TNBC) cells. Amygdalin induced apoptosis of Hs578T TNBC cells. Amygdalin downregulated B-cell lymphoma 2 (Bcl-2), upregulated Bcl-2-associated X protein (Bax), activated of caspase-3 and cleaved poly ADP-ribose polymerase (PARP). Amygdalin activated a pro-apoptotic signaling molecule p38 mitogen-activated protein kinases (p38 MAPK) in Hs578T cells. Treatment of amygdalin significantly inhibited the adhesion of Hs578T cells, in which integrin ${\alpha}5$ may be involved. Taken together, this study demonstrates that amygdalin induces apoptosis and inhibits adhesion of breast cancer cells. The results suggest a potential application of amygdalin as a chemopreventive agent to prevent or alleviate progression of breast cancer, especially TNBC.

Process Technologies of Reforming, Upgrading and Purification of Anaerobic Digestion Gas for Fuel Cells (연료전지에의 적용을 위한 혐기성 소화가스의 정제, 고질화 및 메탄개질 기술)

  • BAE, MINSOO;LEE, JONGYEON;LEE, JONGGYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • Biogas is a renewable fuel from anaerobic digestion of organic matters such as sewage sludge, manure and food waste. Raw biogas consists mainly of methane, carbon dioxide, hydrogen sulfide, and water. Biogas may also contain other impurities such as siloxanes, halogenated hydrocarbons, aromatic hydrocarbons. Efficient power technologies such as fuel cell demand ultra-low concentration of containments in the biogas feed, imposing stringent requirements on fuel purification technology. Biogas is upgraded from pressure swing adsorption after biogas purification process which consists of water, $H_2S$ and siloxane removal. A polymer electrolyte membrane fuel cell power plant is designed to operate on reformate produced from upgraded biogas by steam reformer.

A Study on the Biodegradability and Characteristics Based on Apparent Molecular Weight Distribution of Dissolved Organic Matter in Sewage (하수중 용존 유기물의 생분해도 및 분자량 분포에 따른 거동특성에 관한연구)

  • 최정헌;이윤진;명복태;우달식;이운기;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.92-99
    • /
    • 2001
  • This present study was aimed to investigate the characteristics of dissoloved organic matter (DOC) in sewage. The results are summarized as follows ; The plateaux reached in 3~4 days by the biodegradability test on sewage samples based on DOC. 쏭 rations of BDOC to DOC were 48, 21, 13 and 11% for raw sewage, primary treatment effluent, secondary treatment effluent and final treatment effluent, respectively. As the SUVA values ranged less 3L/m.mg for the effluent of sewage treatment plant, the DOC is composed largely of non-humic materials, hydrophilic, less aromatic as compared to waters with higher SUVA values. Through the biodegradability test, Dissolved organics showed that the quantity of LMW(Low Molecular Weight) less than 1,000 daltons was decreased, HMW(High Molecular Weight) more than 30,000 daltons had a tendency to increase. Large portion of UV$^{254}$ in final treatment effluent was increased of MMW(Medium Molecular Weight). Also, average removal efficiency of DOC was 32% during sewage treatment.

  • PDF

Effects of essential oil (blended and single essential oils) on anti-biofilm formation of Salmonella and Escherichia coli

  • Oh, S.Y.;Yun, W.;Lee, J.H.;Lee, C.H.;Kwak, W.K.;Cho, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.59 no.2
    • /
    • pp.4.1-4.5
    • /
    • 2017
  • Background: Biofilms were the third-dimensional structure in the solid surface of bacteria. Bacterial biofilms were difficult to control by host defenses and antibiotic therapies. Escherichia coli (E. coli) and Salmonella were popular pathogenic bacteria that live in human and animal intestines. Essential oils are aromatic oily liquids from plant materials and well known for their antibacterial activities. Method: This study was conducted to determine effect of essential oil on anti-biological biofilm formation of E. coli and Salmonella strains in in vitro experiment. Two kinds of bacterial strains were separated from 0.2 g pig feces. Bacterial strains were distributed in 24 plates per treatment and each plates as a replication. The sample was coated with a Bacterial biofilm formation was. Result: Photographic result, Escherichia coli (E. coli) and Salmonella bacteria colony surface were thick smooth surface in control. However, colony surface in blended and single essential oil treatment has shown crack surface layer compared with colony surfaces in control. Conclusion: In conclusion, this study could confirm that essential oils have some interesting effect on anti-biofilm formation of E. coli and Salmonella strains from pig feces.

Growth and Chemical Properties of Oriental Tobacco as affected by Transplanting Time (오리엔트종 연초의 생육 및 화학특성에 미치는 이식시기의 영향)

  • Ryu, Myong-Hyun;Jung, Hyung-Jin;Lee, Un-Chul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.10 no.2
    • /
    • pp.109-116
    • /
    • 1988
  • Oriental tobacco (KA 101) was transplanted from Mar. 25 to May 5 with 10 days interval in 1984 and 1985, and its agronomic characteristics, chemical properties ware compared to determine the Proper transplanting time of aromatic tobacco In Korea. As the transplanting was delayed, days to flowering of plant was shortened, length and width of largest leaf, leaf area index tended to decrease. Yield was highest for the Apr. 5th transplanting followed by Mar. 25th planting, then decreased as the planting date was delayed. Quality by price decreased as the transplanting was delayed later than Apr. 25. Delaying transplanting increased nicotine, total nitrogen and ash content, but decreased reducing sugar and petroleum ether extract of cured leaves, The content of volatile organic acids such as 3-methyl pentanoic acid was lower when it was transplanted later than Apr. 25th. Neophytadiene content increased as the transplanting was delayed, but there were no trends with the content of alcohols, aldehydes esters and ketones. Several quality indices including the ratio between the content of volatile organic acids plus petroleum ether extract and ash content plus pH was higher for the Apr. 5th transplanting.

  • PDF

Evaluation of Inhibition Efficiency of Thymus Extract as a Corrosion Inhibitor of Aluminum Alloy 5083 in an Ethylene Glycol/NaCl Corrosive Medium

  • H. Hachelef;R. Mehdaoui;K. Hachama;M. Amara;A. Khelifa;A. Benmoussat;M. Hadj Meliani;Rami K. Suleiman
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.314-321
    • /
    • 2023
  • The aim of the present study was to investigate the effect of thymus extract on corrosion inhibition of aluminum 5083 alloy in a 0.1 M NaCl medium prepared using a mixture of ethylene glycol and water using potentiodynamic and electrochemical impedance spectroscopy (EIS) techniques. The potentiodynamic electrochemical technique showed an increase in corrosion inhibition efficiency starting from 49.63% at a concentration of 0.25 g/L to 92.71% at a maximum concentration of 1.25 g/L of the extract. These results were consistent with those obtained via EIS analysis. Spectral characterization of the tested plant extract using the Fourier-transform infrared spectroscopy (FTIR) technique confirmed the presence of organic compounds having different oxygen and aromatic functionalities in the extract that could help enhance the adsorption of these compounds on the aluminum surface. This study reveals possible adsorption isotherm of the thymus extract on the aluminum surface, supporting a Langmuir isotherm for the adsorption of inhibitor molecules on this surface.

Study on Development of Automated System for Hazard Screening at Analysis (위험 선별 및 분석 통합 자동화 시스템 개발에 대한 연구)

  • 한의진;김용하;최승준;김구회;윤인섭
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.20-27
    • /
    • 2003
  • Hazard Analysis is one of the basic tasks to ensure the safety of chemical plants. However, it is an arduous, tedious, time-consuming work and requires multidisciplinary knowledge and demands considerable cognitive load from the analysts. To overcome these problems, there have been attempts to automate this work by utilizing computer technology, particularly in the area of knowledge-based technique. There is two methods in the risk assessment of Chemical plant; quantitative and qualitative risk assessment. Both of them have been applied respectively, but if the integrated method of quantitative and qualitative risk assessments is used, all of the advantage of two methods can be applied. It is difficult to carry out integrated risk management of chemical plant. Therefore, automated integration system of risk management is necessary. We developed S/W Automated System for Hazard Screening & Analysis(ASCA) and applied to practical plant. By applying ASCA to case study, we can get the information about relative ranks of equipments, variable deviation, and consequence of potential accident. In this study, we applied ASCA to the H.T.U(Hydrotreating Unit) of the process to produce aromatic material. We could know relative ranks of equipments, variable deviation of malfunction in storage tank, D-101, and consequence of potential accident using ASCA. If integrated risk management in the chemical plant is applied, we can develop the emergency plan and prevent the accident.

Recovery of BTEX-aromatics from Post-consumer Polypropylene Fraction by Pyrolysis Using a Fluidized Bed (유동층(流動層) 급속열분해(急速熱分解)에 의한 폐(廢) Polypropylene fraction으로부터 BTEX-aromatics의 회수(回收))

  • Cho, Min-Hwan;Jeong, Soo-Hwa;Kim, Joo-Sik
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.50-56
    • /
    • 2008
  • A polypropylene fraction collected from the stream of post-consumer plastics was pyrolyzed. The aim of this study is to observe the dependence of yield of BTEX-aromatics normally used as solvent on the reaction temperature. To reach the goal, three experiments were carried out at different temperature between 650 and $700^{\circ}C$, using a fluidized bed reactor that shows an excellent heat transfer. In the experiments, product gases were used as a fluidizing medium to maximize the amount of BTEX-aromatics at fixed flow rate and feed rate during the pyrolysis. Oil, gas and char were obtained as product fractions. Product gases were analyzed with GCs(TCD, FID) and with a GC-MS system for qualitative analysis. For an accurate analysis of product oil, the product oil was distilled under vacuum, and separated the distillation residues from oil fractions that were actually analyzed with a GC-MS system. As the reaction temperature went higher, the content of BTEX-aromatics increased. The maximal yield of BTEX-aromatics was obtained at $695^{\circ}C$ with a value of about 30%. The main compounds of product gas were $CH_4$, $C_2H_4$, $C_2H_6$, $C_3H_6$, $C_4H_{10}$ and the product gas had an higher heating value about 45MJ/kg. It could be used as a heat source for a pyrolysis plant or for other fuel applications.

Effects of Plants, Rhizobacteria and Physicochemical Factors on the Phytoremediation of Contaminated Soil (오염 토양의 식물상 복원효율에 미치는 식물, 근권세균 및 물리.화학적 인자의 영향)

  • Hong, Sun-Hwa;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.4
    • /
    • pp.261-271
    • /
    • 2007
  • Phytoremediation is an economic and environmentally friendly technique to remediate contaminated-soil. In this study, the effects of plants, rhizobacteria and physicochemical factors on phytoremediation have been reviewed. For successful phytoremediation, the selection of plants is primarily important. To remediate soil contaminated with petroleum hydrocarbon, raygrass (Lolium multiflorum lam), white mustard, vetch (Vicia villosa), tall fescue (Festuca arundinacea), legumes, poplar, and Pine (Pinus densiflora) were mainly applied, and the removal efficiency of petroleum hydrocarbon were ranged 68 to 99%. Corn (Zea mays), raygrass (Lolium multiflorum lam), vetch (Vicia villosa), mustard, clover (Trifolium repens), and tall fescue (Festuca arundinacea) were used for the removal of polycyclic aromatic hydrocarbon, and their removal efficiencies were 50-98%. Rhizobacteria play significant roles for phytoremediation because they can directly participate in the degradation of contaminant as well as promoting plants growth. The following rhizobacteria were preferred for phytoremediation: Azospirillum lipoferum, Enterobactor cloacae, Azospirillum brasilense, Pseudomonas putida, Burkholderia xenovorans, Comamonas testosterone, Pseudomonas gladioli, Azotobacter chroococcum, Bacillus megaterium, and Bacillus subtilis. Pysicochemical factors such as pH, temperature, nutrient, electron acceptor, water content, organic content, type of contaminants are consequential limiting factors for phytoremediation.