• Title/Summary/Keyword: Aroma compound

Search Result 86, Processing Time 0.025 seconds

Synthesis of Odorants p-Mentha-8-ene-2-one Derivatives by the Reaction of Dihydrocarvone with Formaldehyde (p-Mentha-8-ene-2-one계 향료합성)

  • 유충규;송기춘
    • YAKHAK HOEJI
    • /
    • v.35 no.4
    • /
    • pp.335-340
    • /
    • 1991
  • The synthetic product of 1-hydroxymethyl-p-mentha-8-ene-2-one was afforded by the reaction between dihydrocarvone and formaldehyde. This reaction involves the aldol condensation. The preferential position of formaldehyde is methyl substituted .alpha.-carbon atom where these enols are regiospecifically formed. The hydroxymethylation of dihydrocarvone was also proved to happen regiospecifically in the position of .alpha.-methyl substituted ketone. When 1-hydroxymethyl-p-mentha-8-ene-2-one reacted with LiAIH$_{4}$, 1-hydroxymethyl-p-mentha-8-ene-2$\beta$-ol obtained. 1-Hydroxymethyl-p-mentha-8-ene-2-one reacted with PDC and chromic acid to give 1-formyl-p-mentha-8-ene-2-one and 1-carboxy-p-mentha-8-ene-2-one. When the hydroxymethyl group of 1-hydroxymethyl-p-menta-8-ene-2-one was reducted to methyl group, 1-methyl-p-menta-8-ene-2-one was obtained. Some of these new compound have certain odor. I, II have woody aroma and IV, V have camphory odors. IX has flowery minty odor.

  • PDF

Utilization of Masking Techniques to Ameliorate Agricultural Odorants

  • Yoon, Young-Mo;Schilling, Mark W.;Bazemore, Russell
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.689-693
    • /
    • 2005
  • Different masking materials were evaluated for their ability to ameliorate odor of model poultry manure solution by assessing their effects on sensory pleasantness and odor intensity. Results indicated extracts from Eastern red cedar leaves, Loblolly pine needles', and commercial masking agents such as pine extract and odor neutralizer were effective (p<0.05) for masking odor of model poultry manure solution by increasing (p<0.05) pleasantness (82 and 86% increases in pleasantness using red cedar and pine needle extracts, respectively) and decreasing (p<0.05) odor intensity (odor intensity reduction by 66 and 76% using red cedar pine needle extract). The most odor-active compound in Loblolly pine needle extract was ${\alpha}$-terpineol (1,573.8 ug/g) which is responsible for aroma of pine trees (piney) and effective for ameliorating agricultural odors.

Flavour Chemistry of Chicken Meat: A Review

  • Jayasena, Dinesh D.;Ahn, Dong Uk;Nam, Ki Chang;Jo, Cheorun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.732-742
    • /
    • 2013
  • Flavour comprises mainly of taste and aroma and is involved in consumers' meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration and formation of undesirable "warmed over flavour" in chicken meat products are supposed to be the lack of ${\alpha}$-tocopherol in chicken meat.

Net Analyte Signal-based Quantitative Determination of Fusel Oil in Korean Alcoholic Beverage Using FT-NIR Spectroscopy

  • Lohumi, Santosh;Kandpal, Lalit Mohan;Seo, Young Wook;Cho, Byoung Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.3
    • /
    • pp.208-220
    • /
    • 2016
  • Purpose: Fusel oil is a potent volatile aroma compound found in many alcoholic beverages. At low concentrations, it makes an essential contribution to the flavor and aroma of fermented alcoholic beverages, while at high concentrations, it induced an off-flavor and is thought to cause undesirable side effects. In this work, we introduce Fourier transform near-infrared (FT-NIR) spectroscopy as a rapid and nondestructive technique for the quantitative determination of fusel oil in the Korean alcoholic beverage "soju". Methods: FT-NIR transmittance spectra in the 1000-2500 nm region were collected for 120 soju samples with fusel oil concentrations ranging from 0 to 1400 ppm. The calibration and validation data sets were designed using data from 75 and 45 samples, respectively. The net analyte signal (NAS) was used as a preprocessing method before the application of the partial least-square regression (PLSR) and principal component regression (PCR) methods for predicting fusel oil concentration. A novel variable selection method was adopted to determine the most informative spectral variables to minimize the effect of nonmodeled interferences. Finally, the efficiency of the developed technique was evaluated with two different validation sets. Results: The results revealed that the NAS-PLSR model with selected variables ($R^2_{\upsilon}=0.95$, RMSEV = 100ppm) did not outperform the NAS-PCR model (($R^2_{\upsilon}=0.97$, RMSEV = 7 8.9ppm). In addition, the NAS-PCR shows a better recovery for validation set 2 and a lower relative error for validation set 3 than the NAS-PLSR model. Conclusion: The experimental results indicate that the proposed technique could be an alternative to conventional methods for the quantitative determination of fusel oil in alcoholic beverages and has the potential for use in in-line process control.

Changes in Lipoxygenase Activity and Volatile Compounds of Fresh Tea Leaves During Early Growing Season (차잎의 초기 성장 시기 동안 lipoxygenase 활성 및 휘발성 향기성분의 변화)

  • Kim, Hyun-Jeong;Ryu, Sung-Kwon;Roh, Jin-Chul;Lee, Sang-Jun;Park, Seung-Kook
    • Applied Biological Chemistry
    • /
    • v.46 no.1
    • /
    • pp.23-27
    • /
    • 2003
  • Lipoxygenase is the enzyme responsible for the formation of $C_6$-alcohols and $C_6$-aldehydes ($C_6$-compounds), which are well blown contributors to various types of 'green odor' In green tea. Changes in lipoxygenase activity and volatile compounds of green tea leaves were monitored daily during early growing season. The enzyme activity was spectrophotometrically measured using linoleic acid as a substrate. The volatile compounds were extracted through Solid Phase Micro-Extraction, and were subjected to GC and GC-MS analyses. Results showed that lipoxygenase activity and levels of $C_6$-compounds concomitantly increased or decreased during the early growing season, probably caused by the fluctuation in the daily temperature; increase in temperature led to the increase in enzyme activities and $C_6$-compound levels, whereas leaves plucked too early had low volatile compound levels. In this study, optimum plucking time of tea leaves for the production of high quality green tea with a wellbalanced aroma was determined.

The change in C8 and C9 volatile compounds according to the drying conditions of Pleurotus citrinopileauts and P. djamor (노랑느타리와 분홍느타리의 건조조건에 따른 C8과 C9 향기성분의 변화)

  • Minji Oh;Minseek Kim;Ji-Hoon Im;Youn-Lee Oh
    • Journal of Mushroom
    • /
    • v.21 no.4
    • /
    • pp.222-227
    • /
    • 2023
  • Mushrooms have a unique taste and aroma, so in the processing of mushroom products with other ingredients, a separate pre-processing step is often taken to eliminate the mushroom aroma. In this study, we analyzed the changes in the concentration of volatile compounds according to drying conditions to promote the activation of processing using the fruiting bodies of yellow oyster mushrooms(Pleurotus citrinopileatus) and pink oyster mushrooms(P. djamor). The caps and stipes of yellow oyster and pink oyster mushrooms were separated and freeze-dried at -70℃ for 120 hours. Subsequently, they were hot air-dried at temperatures of 40, 50, 60, and 70℃ for 24, 24, 16, and 12 hours, respectively. The dried samples were pulverized and quantitatively analyzed by SPME-GC-MS. In the case of yellow oyster mushrooms, the concentration of t-2-nonenal in caps and stipes during freeze-drying was 164.43 ㎍/g d.w. and 174.80 ㎍/g d.w., respectively, whereas during hot air-drying, it significantly decreased to 0.35~3.41 ㎍/g d.w. and 0.98~59.88 ㎍/g d.w. In a similar manner, for pink oyster mushrooms, the concentration of 1-octen-3-ol during freeze-drying in caps and stipes was 31.05 ㎍/g d.w. and 176.17 ㎍/g d.w., respectively, whereas during hot air-drying, it significantly decreased to 1.59~9.66 ㎍/g d.w. and 1.96~15.77 ㎍/g d.w. Furthermore, most volatile compounds showed a tendency to decrease in concentration as the temperature during hot air-drying increased.

Method Development for the Odor-Active Compound Determination by Gas Chromatography/Flame Ionization Detection/Olfactometry (냄새성분 측정을 위한 기체 크로마토그래피/불꽃이온화 검출/후각 검출법의 개발)

  • Kim, Man-Goo;Jung, Young-Rim;Seo, Young-Min;Yang, Hee-Hwa
    • Analytical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.180-190
    • /
    • 2001
  • Oder-active compounds are complex in a sample. These compounds are usually analyzed by GC or GC/MSD while such analytical measurement can quantify specific volatile organic compounds, it has limitations in identifying odor-active compounds. To resolve this problem, GC-Sniffing or GC-Olfactometry method has been attempted. In this study, GC/FID/Olfactometry system was developed. This system can simultaneously sniff and detect GC effluents by traditional GC combined with human olfactory system. The time gap between FID and ODP response was dependent on the kinds and concentrations of chemicals and panels, with more volatile, stronger and shorten breath cycle panel showing narrow time gap. Thus, clear relationship between FID and ODP should be considered to identify the odor-active compounds.

  • PDF

Changes of Methyl trans-cinnamate Levels During Fruit-body Development in Tricholoma matsutake

  • Lee, Wi Young;Park, Youngki;Ahn, Jin Kwon;Ka, Kang Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.5 s.162
    • /
    • pp.330-333
    • /
    • 2005
  • The relationship between the contents of methyl trans-cinnamate and the ratio of DP/DS (diameter of pileus / diameter of stalk) in the fruit-body of Tricholoma matsutake during its development was investigated. The stages of development were divided as follows: stage A is less than 1, stage B is from 1 to less than 2, stage C is from 2 to less than 3, and stage D is more than 3 of the values of DP/DS. The contents of methyl trans-cinnamate in pileus and stalk of pine mushroom ranged from $77{\mu}g/g$ to $824{\mu}g/g$ and from $7.6{\mu}g/g$ to $22.4{\mu}g/g$, respectively during its development. In the part of pileus, there is no relevance of the methyl trans-cinnamate content of pine mushroom between the stage A and B, but there was significantly different among the stage of B, C and D. In the case of stalk, the relevance of the methyl trans-cinnamate content of pine mushroom between stage D and other stages showed a low difference. In addition, as pileus of pine mushroom developed the level of the aroma compound increased as well and showed higher correlation relationship ($r^2=0.877$) between the contents of methyl trans-cinnamate in the pileus and the ratio of DP/DS. From the results of this study, we can conclude that the aromatic component of pine mushroom can be deduced from the value of DP/DS, which indicates the stage of the development appearance.

The Global Volatile Signature of Veal via Solid-phase Microextraction and Gas Chromatography-mass Spectrometry

  • Wei, Jinmei;Wan, Kun;Luo, Yuzhu;Zhang, Li
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.700-708
    • /
    • 2014
  • The volatile composition of veal has yet to be reported and is one of the important factors determining meat character and quality. To identify the most important aroma compounds in veal from Holstein bull calves fed one of three diets, samples were subjected to solid-phase microextraction (SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-MS). Most of the important odorants were aldehydes and alcohols. For group A (veal calves fed entirely on milk for 90 d before slaughter), the most abundant compound class was the aldehydes (52.231%), while that was alcohols (26.260%) in group C (veal calves fed starter diet for at least 60 d before slaughter). In both classes the absolute percentages of the volatile compounds in veal were different indicating that the veal diet significantly (p<0.05) affected headspace volatile composition in veal as determined by principal component analysis (PCA). Twenty three volatile compounds showed significance by using a partial least-squared discriminate analysis (PLS-DA) (VIP>1). The establishment of the global volatile signature of veal may be a useful tool to define the beef diet that improves the organoleptic characteristics of the meat and consequently impacts both its taste and economic value.

김치로부터 분리한 효모가 생산하는 휘발성 화합물이 김치의 풍미에 미치는 효과

  • 김혜자;양차범;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.4
    • /
    • pp.512-518
    • /
    • 1996
  • Eleven strains had been previously isolated from kimchi and identified in our laboratory. The ability of each strain in aroma production was investigated by sensory evaluation. Among them Saccharomyc s sp. YK-17, Saccharomyces sp. YK-18, Saccharomyces sp. YH-3 and Saccharomyces fermentati YK-19 produced fruity flavour. Especially, Saccharomyces fermentati YK-19 produced apple and pineapple-like flavours. Pichia media YK-11, Saccharomyces sp. YK-20 and Pichia chambardii YH-4 produced wine-like flavour. Debaryomyces sp. YK-6, Debarymyces coudertii YK-10, Saccharomyces sp. YK-12 and Pichia haplophilia YH-5 produced alcoholic flavours. Using the good flavour producing strains as starters, various groups of kimchi were fermented, and the sensory characteristics of each group such as odor, taste and total acceptability were evaluated. The acidic odor, moldy odor and taste were reduced by adding starter, while the fresh sourness odor and taste similar to fruity fiavour were increased by starter. Comparing with the control group, these odor, taste and total acceptability were increased in the starter-added groups, such as Pichia edia YK-11, Saccharomyces sp. YK-17, and Saccharomyces,fermentati YK- 19. Saccharomyces fermentati YK-19 added kimchi group was higher siginificantly (P<0.05) than the others at the total acceptability. Volatile compounds of the culture broth of Saccharomyces fermentati YK-19 were analysed by gas chromatography, and 6 species of esters and 4 species of alcohols were identified. Among them, the ester substances which broth largely responsible for the apple-like flavour in the sensory evaluation, were found to be ethyl 2-methyl butvrate, ethyl pentanoate and ethyl acetate.

  • PDF