Browse > Article
http://dx.doi.org/10.5713/ajas.2012.12619

Flavour Chemistry of Chicken Meat: A Review  

Jayasena, Dinesh D. (Department of Animal Science and Biotechnology, Chungnam National University)
Ahn, Dong Uk (Department of Animal Science, Iowa State University)
Nam, Ki Chang (Department of Animal Science and Technology, Sunchon National University)
Jo, Cheorun (Department of Animal Science and Biotechnology, Chungnam National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.26, no.5, 2013 , pp. 732-742 More about this Journal
Abstract
Flavour comprises mainly of taste and aroma and is involved in consumers' meat-buying behavior and preferences. Chicken meat flavour is supposed to be affected by a number of ante- and post-mortem factors, including breed, diet, post-mortem ageing, method of cooking, etc. Additionally, chicken meat is more susceptible to quality deterioration mainly due to lipid oxidation with resulting off-flavours. Therefore, the intent of this paper is to highlight the mechanisms and chemical compounds responsible for chicken meat flavour and off-flavour development to help producers in producing the most flavourful and consistent product possible. Chicken meat flavour is thermally derived and the Maillard reaction, thermal degradation of lipids, and interaction between these 2 reactions are mainly responsible for the generation of flavour and aroma compounds. The reaction of cysteine and sugar can lead to characteristic meat flavour specially for chicken and pork. Volatile compounds including 2-methyl-3-furanthiol, 2-furfurylthiol, methionol, 2,4,5-trimethyl-thiazole, nonanol, 2-trans-nonenal, and other compounds have been identified as important for the flavour of chicken. However 2-methyl-3-furanthiol is considered as the most vital chemical compound for chicken flavour development. In addition, a large number of heterocyclic compounds are formed when higher temperature and low moisture conditions are used during certain cooking methods of chicken meat such as roasting, grilling, frying or pressure cooking compared to boiled chicken meat. Major volatile compounds responsible for fried chicken are 3,5-dimethyl-1,2,4-trithiolanes, 2,4,6-trimethylperhydro-1,3,5-dithiazines, 3,5-diisobutyl-1,2,4-trithiolane, 3-methyl-5-butyl-1,2,4-trithiolane, 3-methyl-5-pentyl-1,2,4-trithiolane, 2,4-decadienal and trans-4,5-epoxy-trans-2-decenal. Alkylpyrazines were reported in the flavours of fried chicken and roasted chicken but not in chicken broth. The main reason for flavour deterioration and formation of undesirable "warmed over flavour" in chicken meat products are supposed to be the lack of ${\alpha}$-tocopherol in chicken meat.
Keywords
Flavour; Chicken Meat; Maillard Reaction; Lipid Oxidation; Heterocyclic Compounds;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Cheah, P. B. and D. A. Ledward. 1996. High pressure effects on lipid oxidation in minced pork. Meat Sci. 43:123-134.   DOI   ScienceOn
2 Choe, J. H., K. Nam, S. Jung, B. Kim, H. J. Yun and C. Jo. 2010. Differences in the quality characteristics between commercial Korean native chickens and broilers. Korean J. Food Sci. Anim. Resour. 30:13-19.   과학기술학회마을   DOI   ScienceOn
3 Fanatico, A. C., P. B. Pillai, J. L. Emmert, E. E. Gbur, J. F. Meullenet and C. M. Owens. 2007. Sensory attributes of slow- and fast-growing chicken genotypes raised indoors or with outdoor access. Poult. Sci. 86:2441-2449.   DOI
4 Farmer, L. J. 1999. Poultry meat flavour. In: Poultry Meat Science: Poultry Science Symposium Series Vol. 25 (Ed. R. I. Richardson and G. C. Mead). CABI Publishing, Oxon. pp. 127-158.
5 Farmer, L. J. and D. S. Mottram. 1994. Lipid-Maillard interactions in the formation of volatile aroma compounds. In: Trends in Flavour Research (Ed. H. Maarse and D. G. vander Heij). Elsevier, Amsterdam. pp. 313-326.
6 Fors, S. 1983. Sensory properties of volatile Maillard reaction products and related compounds. In: The Maillard Reaction in Foods and Nutrition (Ed. G. R. Waller and M. S. Feather). American Chemical Society, Washington. pp. 185-286.
7 Kavitha, S. and V. K. Modi. 2007. Effect of water activity and temperature on degradation of 5'-inosine monophosphate in a meat model system. LWT-Food Sci. Technol. 40:1280-1286.   DOI   ScienceOn
8 Kerler, J. and W. Grosch. 1997. Character impact odourants of boiled chicken: changes during refrigerated storage and reheating. Eur. Food Res. Technol. 205:232-238.
9 Kiyohara, R., S. Yamaguchi, K. Rikimaru and H. Takahashi. 2011. Supplemental arachidonic acid-enriched oil improves the taste of thigh meat of Hinai-jidori chickens. Poult. Sci. 90:1817-1822.   DOI   ScienceOn
10 Kruk, Z. A., H. Yun, D. L. Rutley, E. J. Lee, Y. J. Kim and C. Jo. 2011. The effect of high pressure on microbial population, meat quality and sensory characteristics of chicken breast fillet. Food Control 22:6-12.   DOI   ScienceOn
11 Wattanachant, S., S. Benjakul and D. A. Ledward. 2004. Composition, color, and texture of Thai indigenous and broiler chicken muscles. Poult. Sci. 83:123-128.   DOI
12 Tang, J., Q. Z. Jin, G. H. Shen, C. T. Ho and S. S. Chang. 1983. Isolation and identification of volatile compounds from fried chicken. J. Agric. Food Chem. 31:1287-1292.   DOI
13 Varavinit, S., S. Shobsngob, M. Bhidyachakorawat and M. Suphantharika. 2000. Production of meat-like flavour. Science Asia. 26:219-224.   DOI
14 Wasserman, A. E. 1972. Thermally produced flavour components in the aroma of meat and poultry. J. Agric. Food Chem. 20:737-741.   DOI
15 Aliani, M. and L. J. Farmer. 2005. Precursors of chicken flavour II: Identification of key flavour precursors using sensory methods. J. Agric. Food Chem. 53:6455-6462.   DOI   ScienceOn
16 Kurihara, K. 1987. Recent progress in the taste receptor. In: Umami: A Basic Taste (Ed. Y. Kawamura and M. R. Kare). Marcel Dekker, New York. pp. 3-39.
17 Lillard, D. A. 1987. Oxidative deterioration in meat, poultry, and fish. In: Warmed-Over Flavour of Meat (Ed. A. J. St. Angelo and M. E. Bailey). Academic Press, Orlando. pp. 41-67.
18 Liu, X. D., D. D. Jayasena, Y. Jung, S. Jung, B. S. Kang, K. N. Heo, J. H. Lee and C. Jo. 2012. Differential proteome analysis of breast and thigh muscles between Korean native chickens and commercial broilers. Asian Australas. J. Anim. Sci. 25:895-902.   과학기술학회마을   DOI   ScienceOn
19 Brunton, N. P., D. A. Cronin and F. J. Monahan. 2002. Volatile components associated with freshly cooked and oxidized off-flavours in turkey breast meat. Flavour Fragr. J. 17:327-334.   DOI   ScienceOn
20 Calkins, C. R. and J. M. Hodgen. 2007. A fresh look at meat flavour. Meat Sci. 77:63-80.   DOI   ScienceOn
21 Perez-Alvarez, J. A., E. Sendra-Nadal, E. J. Sanchez-Zapata and M. Viuda-Martos. 2010. Poultry flavour: General aspects and applications. In: Handbook of Poultry Science and Technology Volume 2: Secondary Processing (Ed. I. Guerrero-Legarreta and Y. H. Hui). John Wiley and Sons Inc, New Jersey. pp. 339-357.
22 Poste, L. M. 1990. A sensory perspective of effect of feeds on flavor in meats: Poultry meats. J. Anim. Sci. 68:4414-4420.
23 Gasser, U. and W. Grosch. 1990. Primary odorants of chicken broth: A comparative study with meat broths from cow and ox. Z. Lebensm. Unters. Forsch. 190:3-8.   DOI
24 Graf, E. and S. S. Panter. 1991. Inhibition of warmed-over flavour development by polyvalent cations. J. Food Sci. 56:1055-1058.   DOI
25 Jayasena, D. D., D. U. Ahn, K. C. Nam and C. Jo. 2013. Factors affecting cooked chicken meat flavor: A review. Worlds Poult. Sci. J. (In press).
26 Hayman, M. M., I. Baxter, P. J. O'Riordan and C. M. Stewart. 2004. Effects of high pressure processing on the safety, quality, and shelf life of ready-to-eat meats. J. Food Prot. 67:1709-1718.
27 Ho, C. T., Y. C. Oh and M. Bae-Lee. 1994. The flavour of pork. In: Flavour of Meat and Meat Products (Ed. F. Shahidi). Blackie Academic and Professional, London. pp. 38-51.
28 Jaturasitha, S., T. Srikanchai, M. Kreuzer and M. Wicke. 2008. Difference in carcass and meat characteristics between chicken indigenous to northern Thailand (Black-boned and Thai native) and imported extensive breeds (Bresse and Rhode Island Red). Poult. Sci. 87:160-169.   DOI   ScienceOn
29 Joo, S. T. and G. D. Kim. 2011. Meat quality traits and control technologies. In: Control of Meat Quality (Ed. S. T. Joo). Research Signpost, Kerala: pp. 1-20.
30 Jung, Y., H. J. Jeon, S. Jung, J. H. Choe, J. H. Lee, K. N. Heo, B. S. Kang and C. Jo. 2011. Comparison of quality traits of thigh meat from Korean native chickens and broilers. Korean J. Food Sci. Anim. Resour. 31:684-692.   과학기술학회마을   DOI   ScienceOn
31 Meinert, L., A. Schafer, C. Bjergegaard, M. D. Aaslyng and W. L. Bredie. 2009. Comparison of glucose, glucose 6-phosphate, ribose, and mannose as flavour precursors in pork; the effect of monosaccharide addition on flavour generation. Meat Sci. 81:419-425.   DOI   ScienceOn
32 Melton, S. L. 1999. Current status of meat flavour. In: Quality Attributes of Muscle Foods (Ed. Y. L. Xiong, C. T. Ho and F. Shahidi ). Kluwer Academic/ Plenum Publishers, New York. pp. 115-130.
33 Min, B., J. C. Cordray and D. U. Ahn. 2010. Effect of NaCl, myoglobin, Fe(II), and Fe(III) on lipid oxidation of raw and cooked chicken breast and beef loin. J. Agric. Food Chem. 58:600-605.   DOI   ScienceOn
34 Mottram, D. S. 1998. Flavour formation in meat and meat products: a review. Food Chem. 62:415-424.   DOI   ScienceOn
35 Mottram, D. S. 1991. Meat. In: Volatile Compounds in Foods and Beverages (Ed. H. Maarse). Marcel Dekker, New York. pp. 107-177.
36 Mottram, D. S. 1994a. Flavour compounds formed during the Maillard reaction. In Thermally Generated Flavours. Maillard, Microwave, and Extrusion Processes (Ed. T. H. Parliament, M. J. Morello and R. J. McGorrin). American Chemical Society, Washington. pp. 104-126.
37 Mottram, D. S. 1994b. Some aspects of the chemistry of meat flavour. In: The Flavour of Meat and Meat Products (Ed. F. Shahidi). Chapman and Hall, London. pp. 210-230.
38 Mottram, D. S. and R. A. Edwards. 1983. The role of triglycerides and phospholipids in the aroma of cooked beef. J. Sci. Food Agric. 34:517-522.   DOI
39 Mottram, D. S. and M. S. Madruga. 1994. Important sulfur containing aroma volatiles in meat. In: Sulfur Compounds in Foods (Ed. C. J. Mussinan and M. E. Keelan). American Chemical Society, Washington. pp. 180-187.
40 Noleau, I. and B. Toulemonde. 1987. Volatile components of roasted chicken fat. LWT-Food Sci. Technol. 20:37-41.
41 Patterson, R. L. and M. H. Stevenson. 1995. Irradiation-induced off-odor in chicken and its possible control. Br. Poult. Sci. 36:425-441.   DOI   ScienceOn
42 Shahidi, F. 1994. Flavour of meat and meat products-an overview. In: Flavour of Meat and Meat Products (Ed. F. Shahidi). Blackie Academic and Professional, Glasgow. pp. 1-3.
43 Shahidi, F. 2002. Lipid derived flavours in meat products. In: Meat Processing: Improving Quality (Ed. J. Kerry, J. Kerry and D. Ledward). Woodhead Publishing Ltd, Cambridge. pp. 105-121.
44 Shi, H. and C. T. Ho. 1994. The flavour of poultry meat. In: Flavour of Meat and Meat Products (Ed. F. Shahidi). Blackie Academic and Professional, Glasgow. pp. 52-69.
45 Takahashi, H., K. Rikimaru, R. Kiyohara and S. Yamaguchi. 2012. Effect of arachidonic acid-enriched oil diet supplementation on the taste of broiler meat. Asian Australas. J. Anim. Sci. 25:845-851.   DOI   ScienceOn
46 Sitz, B. M., C. R. Calkins, D. M. Feuz, W. J. Umberger and K. M. Eskridge. 2005. Consumer sensory acceptance and value of domestic, Canadian, and Australian grass-fed beef steaks. J. Anim. Sci. 83:2863-2868.
47 Spanier A. M., M. Flores, F. Toldra, M. C. Aristoy, K. L. Bett, P. Bystricky and J. M. Bland. 2004. Meat flavor: contribution of proteins and peptides to the flavor of beef. Adv. Exp. Med. Biol. 542:33-49.   DOI
48 Spanier, A. M., M. Flores, K. W. Mcmillin and T. D. Bidner. 1997. The effect of postmortem aging on meat flavour quality. Correlation of treatment, sensory, instrumental, and chemical descriptors. Food Chem. 59:531-538.   DOI   ScienceOn
49 Tang, H., Y. Z. Gong, C. X. Wu, J. Jiang, Y. Wang and K. Li. 2009. Variation of meat quality traits among five genotypes of chicken. Poult. Sci. 88:2212-2218.   DOI   ScienceOn
50 Lyon, B. G., D. P. Smith, C. E. Lyon and E. M. Savage. 2004. Effects of diet and feed withdrawal on the sensory descriptive and instrumental profiles of broiler breast fillets. Poult. Sci. 83:275-281.   DOI
51 MacLeod, G. 1994. The flavour of beef. In: Flavour of Meat and Meat Products (Ed. F. Shahidi). Blackie Academic and Professional, Glasgow. pp. 4-37.
52 Maga, J. A. 1983. Flavour potentiator. Crit. Rev. Food Sci. Nutr. 18:231-312.   DOI   ScienceOn
53 Whitfield, F. B. 1992. Volatiles from interactions of Maillard reactions and lipids. Crit. Rev. Food Sci. Nutr. 31:1-58.
54 Yamaguchi, S. 1991. Roles and efficacy of sensory evaluation in studies of taste. J. Japan Soc. Food Sci. Technol. 38:972-978.   DOI
55 Rhee, K. S., L. M. Anderson and A. R. Sams. 2005. Comparison of flavour changes in cooked?refrigerated beef, pork and chicken meat patties. Meat Sci. 71:392-396.   DOI   ScienceOn
56 Yano, T., N. Kataho, M. Watanabe, T. Nakamura and Y. Asano. 1995. Evaluation of beef aging by determination of hypoxanthine and xanthine contents: application of a xanthine sensor. Food Chem. 52:439-445.   DOI   ScienceOn
57 Rababah, T., N. S. Hettiarachchy, R. Horax, M. J. Cho, B. Davis and J. Dickson. 2006. Thiobarbituric acid reactive substances and volatile compounds in chicken breast meat infused with plant extracts and subjected to electron beam irradiation. Poult. Sci. 85:1107-1113.   DOI
58 Ramaswamy, H. S. and J. F. Richards. 1982. Flavour of poultry meat- a review. Can. Inst. Food Sci. Technol. J. 15:7-18.   DOI
59 Rikimaru, K. and H. Takahashi. 2010. Evaluation of the meat from Hinai-jidori chickens and broilers:Analysis of general biochemical components, free amino acids, inosine 5'-monophosphate, and fatty acids. J. Appl. Poult. Res. 19:327-333.   DOI   ScienceOn
60 Sanudo, C., M. E. Enser, M. M. Campo, G. R. Nute, G. Maria, I. Sierra and J. D. Wood. 2000. Fatty acid composition and sensory characteristics of lamb carcasses from Britain and Spain. Meat Sci. 54:339-346.   DOI   ScienceOn
61 Sasaki, K., M. Motoyama and M. Mitsumoto. 2007. Changes in the amounts of water-soluble umami-related substances in porcine longissimus and biceps femoris muscles during moist heat cooking. Meat Sci. 77:167-172.   DOI   ScienceOn
62 Shahidi, F. 1989. Flavour of cooked meats. In: Flavour Chemistry: Trends and Developments (Ed. R. Teranishi, R. G. Buttery and F. Shahidi). American Chemical Society, Washington. pp. 188-201.