• Title/Summary/Keyword: Armature reaction

Search Result 37, Processing Time 0.026 seconds

Shape Design of IPMSM for the Reliability Improvement of Traction Motors (견인용 IPMSM의 신뢰성 향상을 위한 형상 설계)

  • Lee, Ki-Doek;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.5
    • /
    • pp.817-823
    • /
    • 2015
  • IPMSM for traction motor has high power density and wide operating range. But high power density causes internal temperature rise and it makes big armature reaction which causes irreversible demagnetization. And with wide operating range, rotor rotating fast gets stress from centrifugal force. For this reason, traction motor is designed to considerate stress of rotor and irreversible demagnetization for reliability. This paper explains shape design method of 120kW IPMSM accounting improvement of reliability. Finally, the validity of the analysis and the performance evaluation were verified through testing of the final model.

Power Conversion and Design of Permanent Magnet Generator for Wind Power Applications (영구자석형 풍력용 발전기의 설계 및 전력 변환)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook;Yoon, Ki-Kab;Kim, Byeong-Han;Kyung, Nam-Ho;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1756-1758
    • /
    • 2005
  • This paper deals with the power conversion and design of permanent magnet generator for wind power applications. This paper derives analytical solutions for open-circuit field, armature reaction field, torque, back-emf, inductance and resistance of permanent magnet generators for wind power applications. And then, by presenting the variation of torque according to design parameters and by applying restrict conditions to it, we determine proper design parameter appropriate to rated power and speed. Finally, this paper also presents power conversion system resonable in wind power applications.

  • PDF

Characteristic Analysis of Permanent Magnet Linear Generator by using Space Harmonic Method (공간고조파법을 이용한 영구자석 선형 발전기의 특성 해석)

  • Seo, Seong-Won;Choi, Jang-Young;Kim, Il-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.688-695
    • /
    • 2017
  • This paper deals with characteristics analysis of a permanent magnet (PM) linear generator using analytical methods for wave energy harvesting. The wave energy is carried out from the movement of a yo-yo system. A linear generator using permanent magnets to generate a magnetic force itself does not require a separate power supply and has the advantage of simple maintenance. In addition to the use of a rare earth, a permanent magnet having a high-energy density can be miniaturized and lightweight, and can obtain high energy-conversion efficiency. We derived magnetic field solutions produced by the permanent magnet and armature reaction based on 2D polar coordinates and magnetic vector potential. Induced voltage is obtained via arbitrary sinusoidal input. In addition, electrical parameters are obtained, such as back-EMF constant, resistance, and self- and mutual-winding inductances. The space harmonic method used in this paper is confirmed by comparing it with finite element method (FEM) results. These facilitate the characterization of the PM-type linear generator and provide a basis for comparative studies, design optimization, and machine dynamic modeling.

A Study on Stand-Alone Electric Power Generator Using Bridge Vibration (교량진동을 이용한 진동형 자가발전기에 대한 연구)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.313-316
    • /
    • 2003
  • This paper presents stand-alone electric power generator using bridge vibration for charging system of health monitoring sensor unit of bridge structure. In this paper, a novel electric power generator utilizing vertical vibration is proposed, which has minimum effect of armature reaction, and the related mechanical and electrical design equations are obtained and then a pilot electric power generator has been implemented. Moreover, the free oscillation test reveals that diode characteristics of rectifier is dominant factor in charging process. Also, simulation results with the Namhae bridge data showed the validity and effectiveness for stand-alone electric power generation.

  • PDF

Comparison of Slotted and Slotless Ring-wound PM Brushless Machines for Electro-Mechanical Battery (EMB용 전동발전기 선정을 위한 슬롯형과 슬롯리스 Ring-wound형 영구자석 브러시리스 기기의 특성 비교)

  • Jang, Seok-Myeong;Jeong, Sang-Sub;Ryu, Dong-Wan;Choi, Sang-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.107-114
    • /
    • 2001
  • Electro-mechanical battery (EMB) consists of a high-speed fly wheel with an integral motor/ generator suspended on magnetic bearings and in an evacuated housing. Permanent magnet (PM) machines as the EMB motor/ generator are a popular choice, since there are no excitation losses which means substantial increase in the efficiency. In this paper we present the comparison of conventional slotted and slotless ring-wound types, aimed at EMB and other high-speed drives. We firstly discuss the topology of each machine for this particular application. these machines are primarily designed as 1kW two-pole PM generator with the rated speed of 40000 rpm. the motoring torque of 0.51 Nm has to be enough to accelerate the flywheel to the rated speed. We then present the comparison of the open-circuit field, the armature reaction field and winding inductance. next we analyze the induced voltage and the developed torque per unit stack length and unit weight of different machines. Finally, we estimate and compare the losses and the efficiency at motoring and generating modes.

  • PDF

Vibration Powered Generator System for Stand-Alone Health Monitoring Sensor Unit (건전도 감시용 자립형 계측유닛을 위한 진동발전시스템)

  • 최남섭;김재민
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.85-92
    • /
    • 2003
  • This paper presents an electric power generating system for stand-alone health monitoring sensor unit of bridge structure based on ambient vibration of bridge. In this paper, a novel electric power generator which has minimum effect of armature reaction is proposed. The related mechanical and electrical design equations are obtained, and a pilot generator has been implemented. In addition, the charging system for extremely low generator current is discussed, and some improvements are identified for the system. This investigation reveals that diode characteristics of rectifier is dominant factor in the charging process. Finally, both the simulation, which uses real measurement data of the Namhae bridge as input of the pilot generator, and indoor test are carried out. The results showed the applicability and effectiveness of the stand-alone vibration powered generator.

PERFORMANCE AND DESIGN OF A SINGLE-PHASE LINEAR SYNCHRONOUS GENERATOR USING FINITE ELEMENT METHOD

  • Eid, Ahmad M.;Kim, Sung-Jun;Kang, Ju-Sung;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.95-99
    • /
    • 2005
  • This paper presents a general proposal to design and calculate the performance of a tubular permanent magnet linear generator treated here on the basis of the Finite Element Method. Optimizing the linear generator dimensions reduces the cogging force, which occurs due to the interaction between stator teeth and the permanent magnets. The generated AC voltage is analyzed and evaluated for both no load and load cases to take the armature reaction effects on the air gap flux density. A repetitive routine is followed to calculate the output AC voltage from the change of flux and the speed of the single-phase linear generator. The AC output voltage is calculated for different resistive loads, and hence, the linear generator load characteristic is obtained. The designed linear generator is capable to generate an output power of 5.3kW with AC output voltage of 222V with an efficiency of 96.8% at full load of 23.8A. The full load current is chosen based on the thermal properties of the coil wire insulations.

  • PDF