• Title/Summary/Keyword: Ark shell

Search Result 94, Processing Time 0.032 seconds

Studies on the Appropriate Processing Season of Ark Shell (Scapharca subcrenata) (새고막(Scapharca subcrenata)의 가공적기에 관한 연구)

  • 박춘규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.6
    • /
    • pp.1408-1411
    • /
    • 1999
  • In order to investigate the appropriate processing season of ark shell(Scapharca subcrenata) cultured at the south coast of Korea, the edible portions were determined for coefficient of fatness and yield of edible portion using specimens collected bimonthly from December 1994 to December 1995. The relationship between shell length(X) and total weight(Y) of S. subcrenata is shown as follows; Y=0.001608X2.5199. The relationship between total weight(X) and meat weight(Y) of S. subcrenata is shown as follows; Y= 0.3594X 0.5566(r=0.99). The relationship between total weight(X) and meat weight(Y) of S. subcrenata is shown as follows; Y=67.1647X+20.6370(r=0.99). The coefficient of fatness and yield of edible portion showed a marked bimonthly variation with a maximum in December and a minimum in August. The appropriate processing season of S. subcrenata would be in winter and spring, and not in summer and autumn season, the spawning season of the S. subcrenata.

  • PDF

Analysis of diversity of hemolytic microbiome from aquafarm of arkshell, Scapharca broughtonii (피조개 양식장 내 용혈성 미생물의 다양성 분석)

  • Gwon, Byeong-Geun;Kim, Young-Ok;Nam, Bo-Hye;Kim, Woo-Jin;Kong, Hee Jeong;Kim, Bong-Seok;Jee, Young-Ju;Lee, Sang-Jun;An, Cheul Min;Kim, Dong-Gyun
    • Journal of fish pathology
    • /
    • v.26 no.3
    • /
    • pp.193-206
    • /
    • 2013
  • The ark shell, Scapharca broughtonii is a marine bivalve mollusks belonging to the family Arcidae and important seafood for Korean and Japanese, and southern coast is brisk bays for the ark shell aquaculture. However, productivity of ark shell from these regions were rapidly reduced during the last decade due to mass mortality. The reason of this great damage has not yet been identified. To overcome this economic loss, diverse investigations were focused on environmental factors that affects in the physiology of S. broughtonii, but microbiological researches were performed insufficiently. Hemoglobin is one of the major blood component of ark shell and is damaged by some species of bacterial toxins. We concentrated on this red pigment because hemolysis could be the cause of ark shell mortality. In this study, we analyzed microbial diversity of underwater sediments in coastal regions and also existences in the body of S. broughtonii. We investigate about 4,200 isolates collected from June to September for microbial diversity of sediments and ark shell. We screened all of culturable microorganisms, and identified 25 genera 118 species, 24 genera 89 species, 30 genera 109 species and 39 genera 141 species, and selected 140 unique colonies for identification and challenge assay.

Prevention of Discoloration and Storage Stability in Canned Ark Shell (새고막 통조림 변색방지 및 저장중 품질변화)

  • 배태진;김귀식
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.2
    • /
    • pp.243-248
    • /
    • 1998
  • Ark shell was known as shellfish that had hemoglobin as blood pigment and the action of mecidine, was consumed the great part of it as raw material, though it was produced about 13,000 M/T per year. Ark shell was processed the infinitesimal quantity as conned product, bout canned ark shell had problem that occurrenced discoloration after heat treatment during processing and storage. This discoloration mechanism during processing and storage was not cleared. This study was carried out to understand characteristics of the hemoglobin as blood pigment and carotenoid as meat pigment in ark shell and management of proper processing conditions for prevention of oxidation and discoloration by thermal treatment. When treated by digestion of 0.1% BHA, 0.1% Tenox-II, 0.5% Na2EDTA, 0.05% NDGA and 3% salt soln., 0.1% BHA solution was most suitable for stability of carotenoid that the retention ratio of carotenoids were 63.1% after heating to 116$^{\circ}C$ for 120 minutes. In preparation of canned ark shell and storage at 37$\pm$1$^{\circ}C$ for 60 days, the chemical composition, pH and salinity ere stable. And contents of total carotenoid were decreased slightly from 0.83mg% to 0.727mg%. The viable cell count were 6.92$\times$103 cfu/ml at raw ark shell, after processed and storage were not detected. The predominant amino acids in the raw ark shell were glutamic acid(19.7%), arginine(16.0%), glycine(12.6%), alanine(12.2%) and aspartic acid(7.6%). When 60 days stored, the contents of amino acid were stable. And the predominant nuclotide and their related compounds in the raw ark shell were hypoxanthine(2.14$\mu$mol/g), IMP(1.94$\mu$mol/g) and ATP(0.87$\mu$mol/g), and storage at 37$\pm$1$^{\circ}C$ for 60 days, the quantity order were same as raw material.

  • PDF

Seasonal Variation of Proximate Composition in Ark Shell (Scapharca subcrenata) Tissues (새고막(Scapharca subcrenata)의 각 조직별 일반성분의 계절변동)

  • 박춘규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.10-14
    • /
    • 2000
  • In order to investigate the appropriate processing season and the production of high value-added products in ark shell(Scapharca subcrenata) cultured at the south coast of Korea, the foot muscle, mantle, and adductor muscle were analyzed for moisture, protein, fat, ash, and glycogen using specimens collected bimonthly from December 1994 to December 1995. The contents of moisture in foot muscle and mantle increased in spring season, however their proteins decreased in same season. Glycogen and fat in foot muscle, mantle, and adductor muscle were most abundant in June, just before the spawning season, but all the cmponsnts dwindled during spawning season. The other hand, the contents of ash in tissues were almost the same level through the year. Thus, the contents of moisture, protein, fat, and glycogen were almost the same level through the year. Thus, the contents of moisture, protein, aft, and glycogen were fluctuated by season. Especially, they showed a marked seasonal variation at before and after sparning season. So, a major cause of seasonal variation in S. subcrenata would be connected with a period of reproduction and spawning season.

  • PDF

Genetic Variability between Ark Shell (Scapharca subcrenata, Lischke) Populations from Daecheon and Wonsan

  • Kim, Sun-Young;Kim, Jong-Yeon;Yoon, Jong-Man
    • The Korean Journal of Malacology
    • /
    • v.25 no.1
    • /
    • pp.5-13
    • /
    • 2009
  • Genomic DNA isolated from two geographical ark shell (Scapharca subcrenata) populations was amplified several times by PCR reactions. The ark shell population from Daecheon (ASPD) and from Wonsan (ASPW) in the West Sea and the East Sea of Korean Peninsula, respectively, obtained. The seven arbitrarily selected primers OPA-05, OPA-11, OPB-09, OPB-11, OPB-14, OPC-18 and OPD-07 were shown to generate the loci observed per primer, shared loci by each population, specific loci, unique shared loci to each population and shared loci by the two populations which could be clearly scored. Here, 862 loci were identified in the ASPD population, and 1,191 in the ASPW population: 137 specific loci (15.9%) in the Daecheon population and 84 (7.1%) in the Wonsan population. 407 shared loci by each population, with an average of 58.1 per primer, were observed in the ASPD population. 473 shared loci by each population, with an average of 67.6 per primer, were identified in the ASPW population. The numbers of specific loci in the ASPD and ASPW population were 137 and 84, respectively. Consequently, the average bandsharing value of individuals within the ASPW population was much higher than in the ASPD population. The bandsharing value between individuals' no. 08 and no. 13 was 0.628, which was the highest measured between the two geographical populations. The dendrogram obtained by the seven primers indicated three genetic clusters: cluster 1 (DAECHEON 01-DAECHEON 11), cluster 2 (WONSAN 12 and 14) and cluster 3 (WON SAN 13, 15, 16, 17, 18, 19, 20, 21 and 22). The genetic distance between the two geographical populations ranged from 0.043 to 0.499. Especially, individual no. 10 of Daecheon population was most distantly related to no. 14 of Wonsan population (genetic distance = 0.499).

  • PDF

Elemental techniques for automated size sorting system considering problems and status of sorting process of ark shell (Scapharca subcrenata) (새꼬막의 선별과정 현황과 문제점을 고려한 자동화 선별 시스템 요소기술)

  • JEONG, Seok-Bong;HWANG, Doo-Jin;YOON, Eun-A;MIN, Eunbi;CHOI, Byeong-Dae;JUNG, Yong-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.256-265
    • /
    • 2017
  • Seafood is attracting attention as a future food industry. In recent years, the demand for fishery equipment of mechanization, automation, and unmanned was increased due to the environment affected by seafood processing, stricter regulations on safety, decline and aging of fishery worker. Ark shell (Scapharca subcrenata) was being produced in many steps in the production process. The process has been made such as collection-landing-washing-first sort (goods/non-goods)-transports-second sort (size). It was undergone first and second steps by delivering to the consumer. Here, the first step is to sort goods to collection and the second step is to sort by size. The fishery workers need ten people in first step and six people in second step. The workload of one hour per kg is 4,247 kg/h in first step and 2,213 kg/h in second step. In addition, the goods ratio by work process was 79% in first step and 98% in the second step. In this process, a lot of fishery worker and working time is needed. Therefore, this study developed elemental techniques for an automated size sorting system considering the working process problem, time and situation for washing and sorting of ark shell.

Spawning Inducement, Egg Development and Early Larval Rearing of Ark Shell (Tegillarca granosa) (L.) (꼬막 (Tegiilarca granosa) (Linngeus)의 산란유발 및 난 발생과 초기 유생 사육)

  • MOON Tae-seok;JUNG Min-min;SHIN Yun-kyung;YANG Mun-ho;KO Chang-sun;CHANG Young-jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.6
    • /
    • pp.485-491
    • /
    • 2004
  • Spawning induction, egg development and larval growth of ark shell (Tegillarca granosa) (L.) were investigated. The most effective method of spawning induction was steady temperature increasing from$4^{\circ}C\;to\;28^{\circ}C$ with irradiation of sea water by UV after T. granosa was exposed to air at $4^{\circ}C$ Optimum condition for larval roaring was under the 32.4 psu and two temperature $regimes:\;28{\pm}1^{\circ}C\;and \;25{\pm}1^{\circ}C$. Fertilized eggs was demersal isolated eggs, and egg diameter was $60{\mu}$. D-shaped larvae appear about 20 hr after hatching with $94.1{\mu}$ in shell length and $86.7{\mu}$ in shell height. Ten days were required from hatching to umbo larva stage, of a mean shell length $125.2{\mu}$. On 25th day, the larva grew to $450{\mu}$ in shell length and began to settle on the bottom. Effect of temperature between $25^{\circ}C$ (control group) and $28^{\circ}C$ on larval growth was not different. Survival rate of larvae settled on the bottom was about $19{\%}$ in both temperatures conditions $(25^{\circ}C\;and\;28^{\circ}C)$.

Studies on Processing and Keeping Quality of Retort Pouched Foods (5) Preparation and Keeping Quality of Retort Pouched Seasoned Ark Shell (레토르트파우치 식품의 가공 및 품질안정성에 관한 연구 (5) 레토르트파우치 조미피조개제품의 제조 및 품질안정성)

  • LEE Eung-Ho;OH Kwang-Soo;AHN Chang-Bum;LEE Tae-Hun;CHUNG Young-Hoon;SHIN Keun-Jin;KIM Woo-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.2
    • /
    • pp.109-117
    • /
    • 1986
  • For the purpose of obtaining basic data which can be applied to processing of retort pouched shellfishes, retort pouched seasoned ark shell, Anadara broughtonii, was prepared. The frozen ark shell was thawed and seasoned with a mixed seasoning powder prepared with $10.0\%$ of sorbitol, $2.0\%$ of table salt and $0.5\%$ of monosodium glutamate at $5^{\circ}C$ for 10 hours, and then dried at $45^{\circ}C$ for 4 hours. The dried seasoned ark shell was coated with $1.0\%$ sodium alginate solution, dried with cola air blast for 2 hours and then vacuum-packed in the laminated plastic film bag (polyester/casted polypropylene= $12{\mu}m/70{\mu}m,\;15{\times}16cm$), and finally sterilized up to Fo=6.0 in hot water circulating retort at $121^{\circ}C$ for 10 minutes. The major fatty acids of raw ark shell and retort pouched seasoned ark shell products were 16:0, 20:5, 22:6, 18:0 and 18:3, and predominant free amino acids of those were lysine, arginine, glycine, alanine, glutamic acid and leucine. In nucleotides and its related compounds of raw ark shell and retort pouched seasoned ark shell products, the most abundant one was AMP, and total extract-N of those was chiefly consisted of free amino acids, betaine and nucleotide and its related compounds. During the processing procedure such as drying and sterilization, unsaturated fatty acids slightly decreased while saturated fatty acids increased, and total extract-N content decreased about a half. From the results of chemical and microbial experiments during storage, it was concluded that the products could be preserved in a good condition for 100 days at room temperature, and their duality could be improved by the coating treatment of sodium alginate solution.

  • PDF

Growth Comparison of Ark Shell, Anadara broughtonii between the Two Culturing Areas (양성장에 따른 피조개, Anadara broughtonii의 성장)

  • Yoo Sung Kyoo;Chang Young Jin;Kang Kyoung Ho;Kim Yong Ku
    • Journal of Aquaculture
    • /
    • v.3 no.1
    • /
    • pp.65-77
    • /
    • 1990
  • The growth of ark shell, Anadara broughtonii was compared between two areas, $Gad\v{o}gdo$ in Jinhae Bay and Namhae located in the southern coast of Korea from May 1986 to October 1987. The ark shells in Namhae grew from 1.38$\pm$0.32 em to 7.20$\pm$0.30 em in shell length, while those in $Gad\v{o}gdo$ grew from 1.38$\pm$0.32 em to 6,41$\pm$0.30 cm in 17 months. Shell height, shell breadth and total weigth of the ark shells in Namhae were also greater than those from $Gad\v{o}gdo$. Bottom quality of $Gad\v{o}gdo$ showed negative skewness, and that of Namhae was positive skewness. Negative skewness of $Gad\v{o}gdo$ seems to be caused by the effect of strong tidal current. This may indicate that Namhae is better area than $Gad\v{o}gdo$ for the culture of the ark shell.

  • PDF

Variation in Physiological Energetics of the Ark Shell Scapharca broughtonii (Bivalvia: Arcidae) from Gamak Bay, South Coast of Korea

  • Shin, Yun-Kyung;Choi, Yoon-Seok;Kim, Eung-Oh;Sohn, Sang-Gyu
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.331-338
    • /
    • 2009
  • This study presents physiological rates of respiration and excretion, clearance rate, and assimilation efficiency of the ark shell Scapharca broughtonii, determined during 2007 from specimens collected in Gamak Bay on the south coast of Korea. Physiological parameters were measured monthly under static, laboratory controlled conditions with ambient conditions, and measurements were performed seasonally in order to estimate scope for growth and its probable sources of variation. Temperature directly influenced respiration and excretion. Clearance rates showed a tendency to be low during May-August, which is a period of gametogenesis. Assimilation efficiency was not significantly different seasonally and was independent of the concentration of chlorophyll a. The scope for growth was negative during high-temperature months (July-August), reflecting the high temperature and low clearance rate, and had its highest positive values during spring and autumn. The energy budget or growth potential of bivalves has been applied to other economically important species. Data on the physiological parameters and scope for growth of S. broughtonii obtained in this study will be used to assess the carrying capacity for ark shell cultivation.