• Title/Summary/Keyword: Argumentation structure

Search Result 31, Processing Time 0.029 seconds

Issues and Effects in Developing Inquiry-Based Argumentation Task for Science Teachers: A Case of Charles' Law Experiment (탐구 실험을 활용한 과학교사 논변 과제 개발과정에서 드러난 쟁점 및 수정 효과: 기체에 대한 샤를의 법칙 실험 사례)

  • Baek, Jongho;Jeong, Dae Hong;Hwang, Seyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.2
    • /
    • pp.79-92
    • /
    • 2014
  • The purpose of this study is to develop an inquiry-based argumentation task for use in science teachers' professional development by providing them with the substantial experience of argumentation. To do so, the study has developed an argumentation task by utilizing the experiment on the Charles' Law of gas and revised by applying to eight teachers three times. We have revised the questions by analyzing three issues that have been revealed throughout this process in ways that facilitated teachers' argumentation. The effects of revision have been confirmed by the improvements in teachers' argumentation pattern. Three issues have been identified in developing argumentation tasks for science teachers' professional development and they are as follows: determining the openness of the structure of a question, achieving cognitive conflict and convergence of opinions at the same time, and ways of utilizing various evidence. As the task has been revised in ways that enabled scientific approach to the inquiry topic and facilitated the convergence of various opinions, the participants' argumentation patterns have improved both quantitatively and qualitatively. Meanwhile, the inclusion of an actual experiment has not influence their argumentation, while the observation of experimental data has been used as the core evidence according to the character of the problem. Based on the study's result, we suggest practical implications for developing argumentation tasks for science teachers in more varying contexts.

The Effects of Argumentation-based General Chemistry Laboratory on Preservice Science Teachers' Understanding of Chemistry Concepts and Writing (논의가 강조된 일반화학실험이 예비교사의 글쓰기 능력 및 화학개념 이해에 미치는 효과)

  • Nam, Jeong-Hee;Koh, Mi-Rye;Bak, Deok-Chan;Lim, Jai-Hang;Lee, Dong-Won;Choi, Ae-Ran
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.8
    • /
    • pp.1077-1091
    • /
    • 2011
  • The purpose of this study was to examine the effects of argumentation-based general chemistry laboratory on preservice science teachers' chemistry concepts understanding and writing. Five topics about argumentation-based general chemistry laboratory activities were developed using Science Writing Heuristic (SWH) approach. Summary Writing Test, and Chemistry Concepts Test were developed as tools to examine the effects of this approach. Both Argumentation-based general chemistry laboratory activities and traditional general chemistry laboratory activities were implemented for the experimental group (23 students), and traditional general chemistry laboratory activities were implemented for the comparative group (16 students). Results of this study indicated that there were significant differences in both groups' chemistry concepts understanding and summary writing. The experimental group showed significantly higher mean score than comparative group in chemistry concepts understanding and summary writing. In the analysis of the sub-component of Summary Writing, there were no significant difference between both groups in 'Big Idea.' However, the experimental group gained significantly higher mean score in 'argumentation,' 'understanding of science concepts,' and 'rhetoric structure.' The results showed that argumentation-based general chemistry laboratory programs were effective in achieving chemistry concepts understanding and writing in general chemistry laboratory.

Methodological Review of the Research on Argumentative Discourse Focused on Analyzing Collaborative Construction and Epistemic Enactments of Argumentation (논증 담화 분석 연구의 방법론적 고찰: 논증활동의 협력적 구성과 인식적 실행의 분석을 중심으로)

  • Maeng, Seungho;Park, Young-Shin;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.4
    • /
    • pp.840-862
    • /
    • 2013
  • This study undertook a methodological investigation on previous research that had proposed alternative methods for analyzing argumentative discourse in science classes in terms of collaborative construction and epistemic enactments of argumentation. The study also proposed a new way of analyzing argumentation discourse based on the achievements and limitations of previous research. The new method was applied to actual argumentation discourse episodes to examine its feasibility. For these purposes, we chose the studies employing Toulmin's argument layout, seeking for a method to analyze comprehensively the structure, content, and justification of arguments, or emphasizing evidence-based reasoning processes of argumentation discourse. In addition, we contrived an alternative method of analyzing argumentative discourse, Discourse Register on the Evidence-Explanation Continuum (DREEC), and applied DREEC to an argumentative discourse episode that occurred in an actual science classroom. The advanced methods of analyzing argumentative discourse used in previous research usually examined argument structure by the presence and absence of the elements of Toulmin's argument layout or its extension. Those methods, however, had some problems in describing and comparing the quality of argumentation based on the justification and epistemic enactments of the arguments, while they could analyze and compare argumentative discourse quantitatively. Also, those methods had limitations on showing participants' collaborative construction during the argumentative discourse. In contrast, DREEC could describe collaborative construction through the relationships between THEMEs and RHEMEs and the links of data, evidence, pattern, and explanation in the discourse, as well as the justification of arguments based on the flow of epistemic enactments of the argumentative discourse.

Automated Scoring of Scientific Argumentation Using Expert Morpheme Classification Approaches (전문가의 형태소 분류를 활용한 과학 논증 자동 채점)

  • Lee, Manhyoung;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.321-336
    • /
    • 2020
  • We explore automated scoring models of scientific argumentation. We consider how a new analytical approach using a machine learning technique may enhance the understanding of spoken argumentation in the classroom. We sampled 2,605 utterances that occurred during a high school student's science class on molecular structure and classified the utterances into five argumentative elements. Next, we performed Text Preprocessing for the classified utterances. As machine learning techniques, we applied support vector machines, decision tree, random forest, and artificial neural network. For enhancing the identification of rebuttal elements, we used a heuristic feature-engineering method that applies experts' classification of morphemes of scientific argumentation.

Elementary School Students' Decision-Making Change through Refutation Materials and Empathic Situation on Socio-Scientific Issue (과학 관련 사회적 문제(SSI) 상황에서 반박자료와 감정이입상황에 따른 초등학생의 의사결정 변화)

  • Yang, Il-Ho;Kim, Ki-Young;Lim, Sung-Man;Kim, Eun-Ae;Kim, Seong-Un
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.1
    • /
    • pp.66-75
    • /
    • 2015
  • This study is to investigate an argumentation level for elementary school students after analysing an argumentation structure about a socio scientific issue(SSI), and inquire a change of the decision-making according to the refutation materials and empathic situation. This data was collected from the semi-structured interview with the 14 students, grade 6th. For this, the first stage is to present the reading materials about the SSI to the students, let them decision-making and make them argue pro and con about the SSI during the interview. After that, facing with the refutation materials against the existing contention and the empathic situation, the change of the decision-making of the students was conducted. After the research, the level of the argumentation of the students was low, and the students who didn't have the background knowledge about the theme made the decisions according to the values, emotions or intuitions of their own. And the decision-making of the students changed more when presented with the refutation materials and the empathic situation, they were difficult to make the decision because of new information and various stances. Besides, they lacked in the ability that recognize the situation related with their own life, just used the fragmentary knowledge associated with value of life respect. Through these result, it is necessary to produce the refutation materials and empathic materials about the SSI to the students for improving the level of argumentation.

The Effects of Science Instruction Using Argumentation on Elementary School Students' Learning Motivation and Scientific Attitude (논의과정 활용 수업이 초등학생의 학습 동기와 과학태도에 미치는 영향*)

  • Lee Ha-Ryong;Nam Kyung-Hee;Moon Seong-Bae;Kim Yong-Gwon;Lee Seok-Hee
    • Journal of Korean Elementary Science Education
    • /
    • v.24 no.2
    • /
    • pp.183-191
    • /
    • 2005
  • The purpose of this study is to examine the efffcts of science instruction using argumentation, with Tolumin's structure of argument, on students' learning motivation and scientific attitude. In the instruction, well-structured problems selected to be argument, in which interactions among students are stressed. The subjects were classified into two groups: One group is composed of sixty-seven students (experimental group) who were participated in solving processes of the scientific argument tasks, and the other is composed of sixty-nine students (comparative group) who were participated in the traditional teaching method. The results of this study implied that experimental group has a positive effect on students' learning motivation and scientific attitude.

  • PDF

Development of an Analytical Framework for Dialogic Argumentation in the Context of Socioscientific Issues: Based on Discourse Clusters and Schemes (과학관련 사회쟁점(SSI) 맥락에서의 소집단 논증활동 분석틀 개발: 담화클러스터와 담화요소의 분석)

  • Ko, Yeonjoo;Choi, Yunhee;Lee, Hyunju
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.3
    • /
    • pp.509-521
    • /
    • 2015
  • Argumentation is a social and collaborative dialogic process. A large number of researchers have focused on analyzing the structure of students' argumentation occurring in the scientific inquiry context, using the Toulmin's model of argument. Since SSI dialogic argumentation often presents distinctive features (e.g. interdisciplinary, controversial, value-laden, etc.), Toulmin's model would not fit into the context. Therefore, we attempted to develop an analytical framework for SSI dialogic argumentation by addressing the concepts of 'discourse clusters' and 'discourse schemes.' Discourse clusters indicated a series of utterances created for a similar dialogical purpose in the SSI contexts. Discourse schemes denoted meaningful discourse units that well represented the features of SSI reasoning. In this study, we presented six types of discourse clusters and 19 discourse schemes. We applied the framework to the data of students' group discourse on SSIs (e.g. euthanasia, nuclear energy, etc.) in order to verify its validity and applicability. The results indicate that the framework well explained the overall flow, dynamics, and features of students' discourse on SSI.

Exploratory Research on Automating the Analysis of Scientific Argumentation Using Machine Learning (머신 러닝을 활용한 과학 논변 구성 요소 코딩 자동화 가능성 탐색 연구)

  • Lee, Gyeong-Geon;Ha, Heesoo;Hong, Hun-Gi;Kim, Heui-Baik
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.2
    • /
    • pp.219-234
    • /
    • 2018
  • In this study, we explored the possibility of automating the process of analyzing elements of scientific argument in the context of a Korean classroom. To gather training data, we collected 990 sentences from science education journals that illustrate the results of coding elements of argumentation according to Toulmin's argumentation structure framework. We extracted 483 sentences as a test data set from the transcription of students' discourse in scientific argumentation activities. The words and morphemes of each argument were analyzed using the Python 'KoNLPy' package and the 'Kkma' module for Korean Natural Language Processing. After constructing the 'argument-morpheme:class' matrix for 1,473 sentences, five machine learning techniques were applied to generate predictive models relating each sentences to the element of argument with which it corresponded. The accuracy of the predictive models was investigated by comparing them with the results of pre-coding by researchers and confirming the degree of agreement. The predictive model generated by the k-nearest neighbor algorithm (KNN) demonstrated the highest degree of agreement [54.04% (${\kappa}=0.22$)] when machine learning was performed with the consideration of morpheme of each sentence. The predictive model generated by the KNN exhibited higher agreement [55.07% (${\kappa}=0.24$)] when the coding results of the previous sentence were added to the prediction process. In addition, the results indicated importance of considering context of discourse by reflecting the codes of previous sentences to the analysis. The results have significance in that, it showed the possibility of automating the analysis of students' argumentation activities in Korean language by applying machine learning.

The Effect of the Argumentation Lessons according to Interaction on High School Students' Academic Achievement (상호작용에 따른 논증수업이 고등학생들의 학업성취도에 미치는 영향)

  • Kim, Bumjoon;Kim, Hyoungbum;Cho, Jeungeun;Bae, Sunghee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.3
    • /
    • pp.309-317
    • /
    • 2015
  • This study aims to find out the argument structure which appears in the type of argument class (teacher- and student-centered) of the high school. The argument structure was compared and analyzed according to analyzing the study achievement and verified the academic achievement related to climate change. The results are listed below. First, the student-centered class is more effective method through the result that analyzed the class type of the teacher in argument-centered class. This result is to suggest more effective method to revitalize the argument activity of students-centered class which students plan for themselves and find more various materials. Second, teacher-centered class is more effective in contrast with argument analysis in the academic achievement test. While this is why the teacher-centered class utilizes an essential data necessary to curriculum in the argumentation, the elements to form the argument increased because students utilized the materials with their interest and concern in the process of proving in the student-centered class. Through the results of the research, it is necessary to develop the argument-centered programs for the science class and the curriculum-centered materials for argument class activity.

Overcoming framing-difference between teacher and students - an analysis of argumentation in mathematics classroom - (틀의 차이를 극복하기 - 수학교실에서의 논증분석 연구 -)

  • Kim, Dong-Won
    • The Mathematical Education
    • /
    • v.46 no.2 s.117
    • /
    • pp.173-192
    • /
    • 2007
  • We define mathematical learning as a process of overcoming framing difference of teachers and students, two main subjects in a mathematics class. We have reached this definition to the effect that we can grasp a mathematical classroom per so and understand students' mathematical learning in the context. We could clearly understand the process in which the framing differences are overcome by analyzing mutual negotiation of informants in specific cultural models, both in its form as well as in its meaning. We review both of the direct and indirect forms of negotiation while keeping track of 'evolution of subject' in terms of content of negotiation. More specifically, we discuss direct negotiation briefly and review indirect negotiation from three distinct themes of (1) argument structure, (2) revoicing, and (3) development patterns and narrative structure of proof. In addition, we describe the content of negotiation under the title of 'Evolution of Subject.' We found that major modes of mutual negotiation are inter-reference and appropriation while the product of continued negotiation is inter-resemblance.

  • PDF