• Title/Summary/Keyword: Argon Heating

Search Result 46, Processing Time 0.024 seconds

Facile Synthesis of MoS2-C60 Nanocomposites and Their Application to Catalytic Reduction and Photocatalytic Degradation

  • Li, Jiulong;Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.286-300
    • /
    • 2016
  • $MoS_2$ precursors were synthesized by reacting thioacetamide ($C_2H_5NS$) with sodium molybdate dihydrate ($Na_2MoO_4{\cdot}2H_2O$) in aqueous HCl solution. $MoS_2$ nanoparticles were prepared from dried $MoS_2$ precursors by calcination in an electric furnace at $700^{\circ}C$ for 2 h under an inert argon atmosphere. $MoS_2-C_{60}$ nanocomposites were obtained by heating $MoS_2$ nanoparticles and fullerene ($C_{60}$) together in an electric furnace at $700^{\circ}C$ for 2 h. Their morphological and the structural properties were characterized by powder X-ray diffraction and scanning electron microscopy. The $MoS_2$ nanoparticles and $MoS_2-C_{60}$ nanocomposites were used as catalysts in the reductions of 2-, 3-, and 4-nitrophenol in the presence of sodium borohydride. The photocatalytic activities of the $MoS_2$ nanoparticles and $MoS_2-C_{60}$ nanocomposites were evaluated in the degradation of organic dyes (brilliant green, methylene blue, methyl orange, and rhodamine B) under ultraviolet light (254 nm).

Studies on the Photo-electrochemical Properties of Ti$O_{2-x}$ Thin Films (Ti$O_{2-x}$ 박막의 광-전기화학적 성질에 관한 연구)

  • Q Won Choi;Chu Hyun Choe;Ki Hyung Chjo;Yong Kook Choi
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.582-591
    • /
    • 1985
  • The thin films of Ti$O_{2-x}$, were prepared by vapor oxidation and Ti$O_2$ single crystal was reduced by heating in argon atmosphere. The photo-electrochemical properties of these samples were studied. When the photocurrent was scanned in 1M NaOH electrolyte solution, several peaks were observed in the vicinity of 320nm in the UV-region and in the vicinity of 520nm, 620nm, and 740nm in the visible-region. Contrary to the previous suppositions, those peaks were produced by the second-order lines from the grating monochromator.

  • PDF

Laser- Plume Effects on Radiation Energy Transfer in Materials Processing (레이저 가공시 에너지 전달과 Plume 효과)

  • Kang, Kae-Myung;Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.12 no.1
    • /
    • pp.27-35
    • /
    • 2002
  • In laser materials processing, localized heating, melting and evaporation caused by focused laser radiation forms a vapor on the material surface. The plume is generally an unstable entity, fluctuating according to its own dynamics. The beam is refracted and absorbed as it traverses the plume, thus modifying its power density on the surface of the condensed phases. This modifies material evaporation and optical properties of the plume. A laser-produced plasma plume simulation is completed using axisymmetric, high-temperature gas dynamic model including the laser radiation power absorption, refraction, and reflection. The physical properties and velocity profiles are verified using the published experimental and numerical results. The simulation results provide the effect of plasma plume fluctuations on the laser power density and quantitative beam radius changes on the material surface. It is proved that beam absorption, reflection and defocusing effects through the plume are essential to obtain appropriate mathematical simulation results. It is also found that absorption of the beam in the plume has much less direct effect on the beam power density at the material surface than defocusing does and helium gas is more efficient in reducing the beam refraction and absorption effect compared to argon gas for common laser materials processing.

The Effect of $MgO-Y_2O_3$ on $Al_2O_3-TiC$ Composites

  • Kasuriya, S.;Atong, D.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.543-544
    • /
    • 2006
  • The effect of the additives, $Y_2O_3$ and MgO, on the sintering and properties of $Al_2O_3-TiC$ composites was investigated. It is known that MgO is used as additive for improving densification and $Y_2O_3$ is applied as sintering aid. In this study, the amounts of TiC were varied in the range of 30-47 wt%. The 0.5 wt% MgO and also varied amounts of $Y_2O_3$ from 0.3 to 1 wt% were added into the composites. The sintering of $Al_2O_3-TiC$ composites was performed in a graphite-heating element furnace at different sintering temperature, 1700 and $1900\;^{\circ}C$, for 2 hr under an argon atmosphere. The results demonstrated that the properties of the composites sintered at $1700\;^{\circ}C$ were much better than those sintered at $1900\;^{\circ}C$. The comparisons on physical properties, mechanical properties and microstructure of composites with and without additives were reported. Comparing with other samples, $Al_2O_3-30wt%TiC$ composites with 0.5wt% MgO and $1\;wt%Y_2O_3$ exhibited the highest density of approximately 98% of theoretical and flexural strength of 302 MPa.

  • PDF

Analysis on DC Glow Discharge Properties of Ar Gas at the Atmosphere Pressure (대기압 Ar 가스의 직류 글로우 방전 특성분석)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.4
    • /
    • pp.417-422
    • /
    • 2010
  • Atmosphere Plasma of Gas Discharge (APGD) has been used in plasma sources for material processing such as etching, deposition, surface modification and so on due to having no thermal damages. The APGD researches on AC source with high frequency have been mainly processed. However, DC APGD studies have been not. In order to understand APGD further, it is necessary to study on fundamental properties of DC APGD. In this paper, we developed a one-dimensional fluid simulation model with capacitively coupled plasma chamber at the atmosphere pressure (760 [Torr]). Nine kinds of Ar discharge particles such as electron (e), positive ions ($Ar^+$, $Ar_2^+$) and neutral particles ($Ar_m^*$, $Ar_r^*$, $Ar_h^*$, $Ar_2^*$(1), $Ar_2^*$(3) and Ar gas) are considered in the computation. The simulation was worked at the current range of 1~15 [mA]. The characteristics of voltage-current were calculated and the structure of Joule heating were discussed. The spatial distributions of Ar DC APGD and the mechanism of power consumption were also investigated.

Effect of Sintering Temperature on the Thermoelectric Properties of Bismuth Antimony Telluride Prepared by Spark Plasma Sintering (방전플라즈마 소결법으로 제조된 Bismuth Antimony Telluride의 소결온도에 따른 열전특성)

  • Lee, Kyoung-Seok;Seo, Sung-Ho;Jin, Sang-Hyun;Yoo, Bong-Young;Jeong, Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.280-284
    • /
    • 2012
  • Bismuth antimony telluride (BiSbTe) thermoelectric materials were successfully prepared by a spark plasma sintering process. Crystalline BiSbTe ingots were crushed into small pieces and then attrition milled into fine powders of about 300 nm ~ 2${\mu}m$ size under argon gas. Spark plasma sintering was applied on the BiSbTe powders at 240, 320, and $380^{\circ}C$, respectively, under a pressure of 40 MPa in vacuum. The heating rate was $50^{\circ}C$/min and the holding time at the sintering temperature was 10 min. At all sintering temperatures, high density bulk BiSbTe was successfully obtained. The XRD patterns verify that all samples were well matched with the $Bi_{0.5}Sb_{1.5}Te_{3}$. Seebeck coefficient (S), electric conductivity (${\sigma}$) and thermal conductivity (k) were evaluated in a temperature range of $25{\sim}300^{\circ}C$. The thermoelectric properties of BiSbTe were evaluated by the thermoelectric figure of merit, ZT (ZT = $S^2{\sigma}T$/k). The grain size and electric conductivity of sintered BiSbTe increased as the sintering temperature increased but the thermal conductivity was similar at all sintering temperatures. Grain growth reduced the carrier concentration, because grain growth reduced the grain boundaries, which serve as acceptors. Meanwhile, the carrier mobility was greatly increased and the electric conductivity was also improved. Consequentially, the grains grew with increasing sintering temperature and the figure of merit was improved.

Interfacial Microstructure of Diffusion-Bonded W-25Re/Ti/Graphite Joint and Its High-Temperature Stability (확산 접합에 의해 제조된 텅스텐-레늄 합금/티타늄/그래파이트 접합체의 미세구조 및 고온 안정성)

  • Kim, Joo-Hyung;Baek, Chang Yeon;Kim, Dong Seok;Lim, Seong Taek;Kim, Do Kyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.751-756
    • /
    • 2016
  • Graphite was diffusion-bonded by hot-pressing to W-25Re alloy using a Ti interlayer. For the joining, a uniaxial pressure of 25 MPa was applied at $1600^{\circ}C$ for 2 hrs in an argon atmosphere with a heating rate of $10^{\circ}C\;min^{-1}$. The interfacial microstructure and elemental distribution of the W-25Re/Ti/Graphite joints were analyzed by scanning electron microscopy (SEM). Hot-pressed joints appeared to form a stable interlayer without any micro-cracking, pores, or defects. To investigate the high-temperature stability of the W-25Re/Ti/Graphite joint, an oxy-acetylene torch test was conducted for 30 seconds with oxygen and acetylene at a 1.3:1 ratio. Cross-sectional analysis of the joint was performed to compare the thickness of the oxide layer and its chemical composition. The thickness of W-25Re changed from 250 to $20{\mu}m$. In the elemental analysis, a high fraction of rhenium was detected at the surface oxidation layer of W-25Re, while the W-25Re matrix was found to maintain the initial weight ratio. Tungsten was first reacted with oxygen at a torch temperature over $2500^{\circ}C$ to form a tungsten oxide layer on the surface of W-25Re. Then, the remaining rhenium was subsequently reacted with oxygen to form rhenium oxide. The interfacial microstructure of the Ti-containing interlayer was stable after the torch test at a temperature over $2500^{\circ}C$.

Sintering of Fe-30 wt% TiC Composite Powders Fabricated from (Fe, TiH2, C) Powder Mixture ((Fe, TiH2, C) 혼합 분말로부터 제조된 Fe-30 wt% TiC 복합재료 분말의 소결)

  • Lee, Byunghoon;Kim, Ji Soon
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.356-361
    • /
    • 2015
  • Fe-30 wt% TiC composite powders are fabricated by in situ reaction synthesis after planetary ball milling of (Fe, $TiH_2$, Carbon) powder mixture. Two sintering methods of a pressureless sintering and a spark-plasma sintering are tested to densify the Fe-30 wt% TiC composite powder compacts. Pressureless sintering is performed at 1100, 1200 and $1300^{\circ}C$ for 1-3 hours in a tube furnace under flowing argon gas atmosphere. Spark-plasma sintering is carried out under the following condition: sintering temperature of $1050^{\circ}C$, soaking time of 10 min, sintering pressure of 50 MPa, heating rate of $50^{\circ}C/min$, and in a vacuum of 0.1 Pa. The curves of shrinkage and its derivative (shrinkage rate) are obtained from the data stored automatically during sintering process. The densification behaviors are investigated from the observation of fracture surface and cross-section of the sintered compacts. The pressureless-sintered powder compacts are not densified even after sintering at $1300^{\circ}C$ for 3 h, which shows a relative denstiy of 66.9%. Spark-plasma sintering at $1050^{\circ}C$ for 10 min exhibits nearly full densification of 99.6% relative density under the sintering pressure of 50 MPa.

Pressureless Infiltration Processing of B4C/Al Composite by Surface Modification (표면 개질에 의한 상압에서의 B4C/Al복합체 제조 방법)

  • 임경란;강덕일;김창삼
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.128-131
    • /
    • 2003
  • Formation of$B_4C/Al$composite by pressureless infiltration was investigated by lowering wetting angle via surface modification of $B_4C$powder with alumina precursor. Surface modification was confirmed by zeta potential analysis. The$B_4C/Al$composite was prepared by placing an Al 6061 disk on the$B_4C$preform and heating at $1030{\circ}C$/20 min under a flowing argon, but no infiltration took place for a bare $B_4C$ preform even at$1250{\circ}C$/30 min. Analysis of XRD and SEM showed the $Al_3BC$phase besides$B_4C$and Al, but no trace of deteriorative$A1_4C_3$.

Properties of a SiC-$ZrB_2$ Composite by condition of SPS on/off Pulse Time (SPS on/off Pulse Time 조건에 따른 SiC-$ZrB_2$ 복합체 특성)

  • Shin, Yong-Deok;Ju, Jin-Young;Lee, Hee-Seung;Park, Jin-Hyoung;Kim, In-Yong;Kim, Cheol-Ho;Lee, Jung-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.314-314
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 40vol.% of Zirconium Diboride(hereafter, $ZrB_2$) powders with Silicon Carbide(hereafter, SiC) matrix. TheSiC+40vol.%$ZrB_2$ composites were manufactured through Spark Plasma Sintering(hereafter, SPS) under argon atmosphere, uniaxial pressure of 50MPa, heating rate of $100^{\circ}C$/min, sintering temperature of $1,500^{\circ}C$ and holding time of 5min. But one on/off pulse sequence(one pulse time: 2.78ms) is 10:9(hereafter, SZ10), and the other is 48:8(hereafter, SZ48). The physical and mechanical properties of the SZ12 and SZ48 were examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffraction(hereafter, XRD) analysis. The apparent porosity of the SZ10 and SZ48 composites were 9.7455 and 12.2766%, respectively. The SZ10 composite, 593.87MPa, had higher flexural strength than the SZ48 composite, 324.78MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had Positive Temperature Coefficient Resistance(hereafter, PTCR).

  • PDF