Browse > Article
http://dx.doi.org/10.7473/EC.2016.51.4.286

Facile Synthesis of MoS2-C60 Nanocomposites and Their Application to Catalytic Reduction and Photocatalytic Degradation  

Li, Jiulong (Department of Convergence Science, Graduate School, Sahmyook University)
Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)
Publication Information
Elastomers and Composites / v.51, no.4, 2016 , pp. 286-300 More about this Journal
Abstract
$MoS_2$ precursors were synthesized by reacting thioacetamide ($C_2H_5NS$) with sodium molybdate dihydrate ($Na_2MoO_4{\cdot}2H_2O$) in aqueous HCl solution. $MoS_2$ nanoparticles were prepared from dried $MoS_2$ precursors by calcination in an electric furnace at $700^{\circ}C$ for 2 h under an inert argon atmosphere. $MoS_2-C_{60}$ nanocomposites were obtained by heating $MoS_2$ nanoparticles and fullerene ($C_{60}$) together in an electric furnace at $700^{\circ}C$ for 2 h. Their morphological and the structural properties were characterized by powder X-ray diffraction and scanning electron microscopy. The $MoS_2$ nanoparticles and $MoS_2-C_{60}$ nanocomposites were used as catalysts in the reductions of 2-, 3-, and 4-nitrophenol in the presence of sodium borohydride. The photocatalytic activities of the $MoS_2$ nanoparticles and $MoS_2-C_{60}$ nanocomposites were evaluated in the degradation of organic dyes (brilliant green, methylene blue, methyl orange, and rhodamine B) under ultraviolet light (254 nm).
Keywords
$MoS_2$ nanoparticles; $MoS_2-C_{60}$ nanocomposites; reductions; photocatalytic activities;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Y. Li, C. Yang, X. H. Rao, F. Xiao, J. D. Wang, and X. T. Su, "Microstructural study of microwave sintered zirconia for dental applications",Ceram. Int., 41, 1255 (2015).   DOI
2 B. Pourabbas and B. Jamshidi, "Preparation of $MoS_2$ nanoparticles by a modified hydrothermal method and the photocatalytic activity of $MoS_2/TiO_2$ hybrids in photo-oxidation of phenol", Chem. Eng. J., 138, 55 (2008).   DOI
3 X. Z. Wang, S. X. Yang, Q. Yue, F. M. Wu, and J. B. Li, "Response of $MoS_2$ nanosheet field effect transistor under different gas environments and its long wavelength photoresponse characteristics", J. Alloys Comp., 615, 989 (2014).   DOI
4 J. Lei, Z. Jiang, X. Lu, G. Nie, and C. Wang, "Synthesis of Few-Layer $MoS_2$ Nanosheets-Wrapped Polyaniline Hierarchical Nanostructures for Enhanced Electrochemical Capacitance Performance", Electrochim. Acta, 176, 149 (2015).   DOI
5 X. Wu, X. Yah, Y. Dai, J. Wang, J. Wang, and X. Cheng, "Facile synthesis of $AgNPs/MoS_2$ nanocomposite with excellent electrochemical properties", Mater. Lett., 152, 128 (2015).   DOI
6 J. Zhou, H. Xiao, B. Zhou, F. Huang, S. Zhou, and W. Xiao, "Hierarchical $MoS_2-rGO$ nanosheets with high $MoS_2$ loading with enhanced electro-catalytic performance", Appl. Surf. Sci., 358, 152 (2015).   DOI
7 W. J. Li, E. W. Shi, Z. Z. Chen, H. Ogino, and T. Fukuda, "Hydrothermal synthesis of $MoS_2$ nanowires", J. Cryst. Growth, 250, 418 (2003).   DOI
8 J. H. Zhan, Z. D. Zhang, X. F. Qian, C. Wang, Y. Xie, and T. Qian, "Solvothermal synthesis of nanocrystalline $MoS_2$ from $MoO_3$ and elemental sulfur", J. Solid State Chem., 141, 270 (1998).   DOI
9 Q. Li, E. C. Walter, W. E. van der Veer, B. Murray, J. T. Newberg, E. W. Bohannan, J. A. Switzer, J. C. Hemminger, and R. M. Penner, "Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis", J. Phys. Chem. B, 109, 3169 (2005).   DOI
10 D. Vollath and D. V. Szabo, "Synthesis of nanocrystalline $MoS_2$ and $WS_2$ in a microwave plasma", Mater. Lett., 35, 236 (1998).   DOI
11 J. T. Richardson, "Electronic properties of unsupported cobaltpromoted molybdenum sulfide", J. Catal., 112, 313 (1988).   DOI
12 X. Zong, J. F. Han, G. J. Ma, H. J. Yan, G. P. Wu, and C. Li, "Enhancement of photocatalytic $H_2$ evolution on CdS by loading $MoS_2$ as cocatalyst under visible light irradiation", J. Am. Chem. Soc., 130, 7176 (2008).   DOI
13 Y. Xu and R. Xu, "Nickel-based cocatalysts for photocatalytic hydrogen production", Appl. Surf. Sci., 351, 779 (2015).   DOI
14 D. Hou, W. Zhou, X. Liu, K. Zhou, J. Xie, G. Li, and S. Chen, "Pt nanoparticles/$MoS_2$ nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction", Elect. Acta, 166, 26 (2015).   DOI
15 D. H. Youn, C. Jo, J. Y. Kim, J. Lee, and J. S. Lee, "Ultrafast synthesis of $MoS_2$ or $WS_2$-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries", J. Power Sources, 295, 228 (2015).   DOI
16 M. A. Al-Daous, "Graphene-$MoS_2$ composite: Hydrothermal synthesis and catalytic property in hydrodesulfurization of dibenzothiophene", Catal. Commun., 72, 180 (2015).   DOI
17 K. Miura and M. Ishikawa, "$C_{60}$ intercalated graphite as nanolubricants", Materials, 3, 4510 (2010).   DOI
18 X. Zhao, H. Liu, Y. Shen, and J. Qu, "Photocatalytic reduction of bromate at $C_{60}$ modified $Bi_2MoO_6$ under visible light irradiation", Appl. Catal. B: Environ., 106, 63 (2011).
19 T. Hasobe, H. Imahori, S. Fukuzumi, and P. V. Kamat, "Light energy conversion using mixed molecular nanoclusters. Porphyrin and $C_{60}$ cluster films for efficient photocurrent generation", J. Phys. Chem. B, 107, 12105 (2003).   DOI
20 K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang, and J. Y. Lee, "Graphene-like $MoS_2$/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries", J. Mater. Chem., 21, 6251 (2011).   DOI
21 Y. Xu, E. Hu, K. Hu, Y. Xu, and X. Hu, "Formation of an adsorption film of $MoS_2$ nanoparticles and dioctyl sebacate on a steel surface for alleviating friction and wear", Tribol. Int., 92, 172 (2015).   DOI
22 D. James and T. Zubkov, "Photocatalytic properties of free and oxide-supported $MoS_2$ and $WS_2$ nanoparticles synthesized without surfactants", J. Photochem. Photobiol. A: Chem., 262, 45 (2013).   DOI
23 D. Y. Liang, C. Cui, H. H. Hu, Y. P. Wang, S. Xu, B. L. Ying, P. G. Li, B. Q. Lu, and H. L. Shen, "One-step hydrothermal synthesis of anatase $TiO_2$/reduced graphene oxide nanocomposites with enhanced photocatalytic activity", J. Alloys Compd., 582, 236 (2014).   DOI
24 W. R. Zhao, Y. Wang, Y. Yang, J. Tang, and Y. N. Yang, "Carbon spheres supported visible-light-driven $CuO-BiVO_4$ heterojunction: preparation, characterization, and photocatalytic properties", Appl. Catal. B: Environ., 115, 90 (2012).
25 H. Liu, T. Lv, C. Zhu, X. Su, and Z. Zhu, "Efficient synthesis of $MoS_2$ nanoparticles modified $TiO_2$ nanobelts with enhanced visible-light-driven photocatalytic activity", J. Mol. Catal. A: Chem., 396, 136 (2015).   DOI
26 H. Liu, T. Lv, X. H. Wu, C. K. Zhu, and Z. F. Zhu, "Preparation and enhanced photocatalytic activity of CdS@RGO core-shell structural microspheres", Appl. Sulf. Sci., 30, 242 (2014).
27 M. Haruta and M. Date, "Advances in the catalysis of Au nanoparticles", Appl. Catal. A: Gen., 222, 427 (2001).   DOI
28 K. S. Shin, Y. K. Cho, J. Y. Choi, and K. Kim, "Facile synthesis of silver-deposited silanized magnetite nanoparticles and their application for catalytic reduction of nitrophenols", Appl. Catal. A: Gen., 413, 170 (2012).
29 S. K. Ghosh, M. Mandal, S. Kundu, S. Nath, and T. Pal, "Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution", Appl. Catal. A: Gen., 268, 61 (2004).   DOI
30 H. J. Song, S. You, X. H. Jia, and J. Yang, "$MoS_2$ nanosheets decorated with magnetic $Fe_3O_4$ nanoparticles and their ultrafast adsorption for wastewater treatment", Ceram. Int., 41, 13896 (2015).   DOI
31 H. J. Fan, C. S. Lu, W. L. W. Lee, M. R. Chiou, and C. C. Chen, "Mechanistic pathways differences between $P25-TiO_2$ and $Pt-TiO_2$ mediated CV photodegradation", J. Hazard. Mater., 185, 227 (2011).   DOI
32 W. Liu, Q. Hu, F. Mo, J. Hu, Y. Feng, H. Tang, H. Ye, and S. Miao, "Photo-catalytic degradation of methyl orange under visible light by $MoS_2$ nanosheets produced by $H_2SiO_3$ exfoliation", J. Mol. Catal. A: Chem., 395, 322 (2014).   DOI
33 S. Ameen, M. S. Akhtar, M. Nazim, and H. S. Shin, "Rapid photocatalytic degradation of crystal violet dye over ZnO flower nanomaterials", Mater. Lett., 96, 228 (2013).   DOI
34 M. Sun, Y. Wang, Y. Fang, S. Sun, and Z. Yu, "Construction of $MoS_2/CdS/TiO_2$ ternary composites with enhanced photocatalytic activity and stability", J. Alloys Comp., 684, 335 (2016).   DOI
35 H. W. Kei and J. C. Yu, "Sonochemical synthesis and visible light photocatalytic behavior of CdSe and $CdSe/TiO_2$ nanoparticles", J. Mol. Catal. A: Chem., 247, 268 (2006).   DOI
36 Y. B. Chen, L. Z. Wang, G. Q. Lu, X. D. Yao, and L. J. Guo, "Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water", J. Mater. Chem., 21, 5134 (2011).   DOI
37 A. Goyal, S. Bansal, and S. Singhal, "Facile reduction of nitrophenols: Comparative catalytic efficiency of $MFe_2O_4$ (M= Ni, Cu, Zn) nano ferrites", Int. J. Hydrogen Energy, 39, 4895 (2014).   DOI
38 C. V. Rode, M. J. Vaidya, and R. V. Chaudhari, "Synthesis of p-aminophenol by catalytic hydrogenation of nitrobenzene", Org. Process Res. Dev., 3, 465 (1999).   DOI