• 제목/요약/키워드: Argon Discharge

검색결과 124건 처리시간 0.025초

Enhancement of seed germination and microbial disinfection on ginseng by cold plasma treatment

  • Lee, Younmi;Lee, Young Yoon;Kim, Young Soo;Balaraju, Kotnala;Mok, Young Sun;Yoo, Suk Jae;Jeon, Yongho
    • Journal of Ginseng Research
    • /
    • 제45권4호
    • /
    • pp.519-526
    • /
    • 2021
  • Background: This study aimed to investigate the effect of cold plasma treatment on the improvement of seed germination and surface sterilization of ginseng seeds. Methods: Dehisced ginseng (Panax ginseng) seeds were exposed to dielectric barrier discharge (DBD) plasma operated in argon (Ar) or an argon/oxygen mixture (Ar/O2), and the resulting germination and surface sterilization were compared with those of an untreated control group. Bacterial and fungal detection assays were performed for plasma-treated ginseng seeds after serial dilution of surface-washed suspensions. The microbial colonies (fungi and bacteria) were classified according to their phenotypical morphologies and identified by molecular analysis. Furthermore, the effect of cold plasma treatment on the in vitro antifungal activity and suppression of Cylindrocarpon destructans in 4-year-old ginseng root discs was investigated. Results: Seeds treated with plasma in Ar or Ar/O2 exhibited a higher germination rate (%) compared with the untreated controls. Furthermore, the plasma treatment exhibited bactericidal and fungicidal effects on the seed surface, and the latter effect was stronger than the former. In addition, plasma treatment exhibited in vitro antifungal activity against C. destructans and reduced the disease severity (%) of root rot in 4-year-old ginseng root discs. The results demonstrate the stimulatory effect of plasma treatment on seed germination, surface sterilization, and root rot disease suppression in ginseng. Conclusion: The results of this study indicate that the cold plasma treatment can suppress the microbial community on the seed surface root rot in ginseng.

리튬 폴리머 전지용 $LiMnO_2$의 열처리 온도에 따른 충방전 특성 (Charge-discharge Properties of $LiMnO_2$ as a Function of Heat Treatment Temperature for Lithium Polymer Batteries)

  • 조영재;위성동;김상기;구할본;김종욱;박계춘
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 춘계학술대회 논문집 센서 박막재료
    • /
    • pp.23-26
    • /
    • 2001
  • The properties of $LiMnO_2$ was studied as a cathode active material for lithium polymer batteries. $LiMnO_2$ cathode active materials were synthesized by the reaction of $LiOH{\cdot}H_2O$ and $Mn_2O_3$ at various temperature under argon atmosphere. The powders were characterized by the X -ray diffraction. For lithium polymer battery applications, the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160~170 mAh/g for o-$LiMnO_2$ cell was achieved. The capacity of o-$LiMnO_2$ electrode demonstrated better than of the spinel $LiMnO_2$ by solid-state reaction.

  • PDF

플라즈마 아크 방전법으로 제조된 Fe 나노분말의 특성 (Characteristics of Fe Nano Powders Synthesized by Plasma Arc Discharge Process)

  • 박우영;윤철수;유지훈;오영우;최철진
    • 한국재료학회지
    • /
    • 제14권7호
    • /
    • pp.511-515
    • /
    • 2004
  • Fe nano powders were synthesized by plasma arc discharge (PAD) process and studied by means of X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). Pure Fe rod($99.9\%$) was used as a source of metallic vapor under argon and hydrogen mixed atmosphere. The synthesized Fe nano powders had nearly spherical shapes and core-shell type structures. The influence of process parameters on the structure and size was investigated. The powder size increased with increasing of the chamber pressure and input current. High hydrogen gas ratio in chamber atmosphere affected the particle size and amount of Fe nanopowder.

리튬 폴리머 전지용 $LiMnO_2$정극의 도전재에 따른 전기 화학적 특성 (Electrochemical Properties of $LiMnO_2$ Cathode as a Function of Addition of Electric Active Materials for Lithium Polymer Batteries)

  • 조영재;김종욱;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.474-477
    • /
    • 2001
  • The properties of LiMnO$_2$ was studied as a cathode active material for lithium polymer batteries. LiMnO$_2$ cathode active materials were synthesized by the reaction of LiOH . $H_2O$ and Mn$_2$O$_3$at various temperature under argon atmosphere. For lithium polymer battery applications, the LiMnO$_2$cell was characterized electrochemically by charge-discharge experiments and a.c. impedance spectroscopy. And the relationship between the characteristics of powders and electrochemical properties was studied in this research. A maximum discharge capacity of 160-170 mAh/g for ο-LiMnO$_2$ cell was achieved. Used that SP270 as electric active material in LiMnO$_2$, it is excellent than property of electric active material used Acetylene black or KS6 at charge/discharge capacity.

  • PDF

고주파 유도방전 플라즈마의 푸로우브법에 의한 계측 (A Measurements of Radio-Frequency Induction Discharge Plasma using probe method)

  • 박성근;박상윤;하장호;박원주;이광식;이동인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 E
    • /
    • pp.1657-1659
    • /
    • 1997
  • Electron temperature and electron density were measured in a radio-frequency inductively coupled plasma (RFICP) using a probe measurements. Measurement was conducted in an argon discharge for pressures from 10 [mTorr] to 40 [mTorr] and input rf power from 100 [W] to 800 [W], Ar flow rate from 5 [sccm] to 30 [sccm], Spatial distribution electron temperature and electron density were measured for discharge with same aspect ratio (R/L=2). Electron temperature and electron density were discovered depending on both pressure and power, Ar flow rate. Electron density was increased with increasing input power and in creasing pressure, increasing Ar flow rate. Radial distribution of the electron density was peaked in the plasma center. Normal distribution of the electron density was peaked in the center between quartz plate and substrate. From these results, We found out the generation mechanism of Radio-Frequency Inductively Coupled Plasma.

  • PDF

고품위 자성체 박막 코팅 시스템 (Coating System for High Quality Ferromagnetic Thin Films)

  • 김기범;황윤식;김영식;박장식;박재범
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.231-232
    • /
    • 2007
  • Nickel oxide thin films were deposited by the DC magnetron reactive sputtering process under the conditions such as various oxygen flow rates(0, 3, 6, 8, 10 sccm) with constant 33 sccm argon flow rate for the sputtering time of 40 second with the power of 0.3 kW. Sheet resistances were measured by the four point probes. In order to observe discharge voltage characteristics according to the oxygen flow rates, the sputtering processes were performed under the powers of 0.2kW and 0.3kW. The feasibility of the coating system for high quality ferromagnetic thin films was tested through the electromagnetic simulation and the thin film thickness measurement from the experiment. It was shown that a discharge voltage was decreased under the low power and low oxygen flow rate, since the oxygen was quickly saturated on nickel target surface. The sheet resistance was increased as oxygen flow rate increased. The film thickness deposited by the coating system for ferromagnetic target was improved approximately 10% in comparison with previous coating systems.

  • PDF

Kinetic Study on the Low-lying Excited States of Ga Atoms in Ar

  • Kuntack Lee;Ju Seon Goo;Ja Kang Ku
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권8호
    • /
    • pp.663-669
    • /
    • 1994
  • Decay kinetics of Ga(5s), Ga(5p) and Ga(4d) atoms in Ar were studied by laser induced fluorescence technique. Theground state gallium atoms in the gas phase were generated by pulsed dc discharge of trimethyl gallium and argon mixtures. Both pulsed discharge and YAG-DYE laser system were controlled by a dual channel pulse generator and the delay time between the end of discharge and laser pulses was set 3.0-6.0 ms. The Ga(5s) and Ga(4d) atoms were generated by single photon excitation from the ground state Ga atoms and radiative lifetimes as well as the total quenching rate constants in Ar were obtained from the pressure dependence of the fluorescence decay rates. The Ga(5p) atoms were populated by a two-photon excitation method and the cascade fluorescence from Ga(5s) atoms were analyzed to extract quenching rate constant of Ga(5p) atoms by Ar in addition to radiative lifetimes of Ga(5p) state. The magnitudes of the quenching rate constants by Ar for the low-lying excited states of Ga atoms are 1.6-3$ {\times}10^{-11}cm^3$ molecul$e^{-1}s^{-1}$, which are much larger than those for alkali, alkaline earth and Group 12 metals. Based on the measured rate constants, kinetic simulations were done to assign state-to-state rate constants.

아르곤과 산소 대기압 플라즈마 방전 효과를 이용한 살균처리 (Treatment of Ar/O2 Atmospheric Pressure Plasma for Sterilization)

  • 손향호;이원규
    • 공업화학
    • /
    • 제22권3호
    • /
    • pp.261-265
    • /
    • 2011
  • 아르곤과 산소 대기압 플라즈마를 이용한 미생물인 E. coli의 살균효과를 분석하였다. 유전체 격막 방전 형태의 플라즈마 반응기는 아르곤과 산소 혼합기체에서 균일한 플라즈마 방전과 오존 생성에 효과적이었다. 직접적인 대기압 플라즈마 조사에 따른 E. coli의 살균처리 공정에서 산소에 대한 혼합비와 인가전력의 증가는 방전기체의 오존 발생농도를 높여 미생물의 살균효과를 증가시켰다. 반응기와 시료와의 거리는 살균효과를 증가하기 위하여 가급적 작게 하는 것이 효율적이었다. 본 연구를 통하여 대기압 플라즈마는 오존과 같은 산화촉진제의 발생으로 저온에서 E. coli와 같은 미생물을 효과적으로 살균할 수 있어 기존의 살균법을 대체 할 수 있는 차세대 살균기술로서의 개발 가능성을 확인 할 수 있었다.

상용 주파수 (60Hz) Plasma Jet Torch의 동작특성에 관한 연구 (A Study on the Operating Characteristics of Commercial Frequency Plasma Jet Torch)

  • 전춘생;정재웅
    • 전기의세계
    • /
    • 제24권1호
    • /
    • pp.75-85
    • /
    • 1975
  • In order to develop the commercial frequency (60Hz) plasma torch of small capacity for material cutting, welding and other industrial heating, the A.C plasma jet generator of non-transfered type is made domestically and the electrode configurations of plasma torch are composed of two kinds of electrodes W-C and W-Cu, combined by thermal emission and field emission electrode materials. In this paper, the characteristics of input power, thermal efficiency, electrode consumption, the flame and forms of arc voltage and arc current for A.C plasma torch are investigated in relation to such variables as arc current, argon flow and magnetic field intensity to obtain the basic design data necessary to A.C plasma jet generator. The result are as follows; (1)The input power, thermal efficiency and electrode consumption are influenced greatly by argon flow, magnetic field intensity and nozzle materials. (2)A.C arc voltage and current are non-symmetrial, involving D.C Component. Due to this current of D.C Component, transformer core is saturated and a large abnormal current flows into the primary winding coil. In order to prevent this abnormal current flow, a condenser must be connected in series to the main discharge circuit. (3)The stability and sharpness of jet flame are improved more in the torch of W-C electrode configuration than in the torch of W-Cu electrode configuration.

  • PDF

Plasma Jet의 동축평행 자계에 의한 영향에 관한 연구 ( 1 ) (A Study on the Influence of Coaxial Parallel Magnetic Field upon Plasma Jet)

  • 전춘생
    • 전기의세계
    • /
    • 제22권2호
    • /
    • pp.57-69
    • /
    • 1973
  • The aim of this study was to investigate the behaviors of plasma jet under coaxial magnetic field in paralled with it for controlling optical characteristics and input power of plasma jet without impurity and instability of arc plasma column. Because the discharge characteristics of plasma jet were so distinctively different according to the existence or non-existence of magnetic field, the input power, luminous intensity of plasma jet and thermal efficiency were comparatively studied in respect of such variables as arc current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle, with the use of several materials which were different in diameter and length of nozzel. The results were as follows; 1) The voltage tends to show a drooping characteristic at law current and then rises gradually. The luminous intensity of plasma jet increases exponentially with arc current. 2) Arc voltage increases and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity increase in accordance with the quantity of argon flow. 4) At first step, arc voltage increases to maximum value with the growth of flux density and then tends to show a gradual decrease. Luminous intensity decreases with the growth flux density. 5) Arc voltage decreases as the constriction length of nozzle increases, maximum decrease is shown at the constriction length of 20(mm) and it increases beyond that value. The luminous intensity decreases as the constriction length grows. 6) Arc voltage and luminous in tensity increase with the growth of diameters of nozzle. 7) Thermal efficiency has values between 50% and 75%, being influenced by arc current, the quantity of argon flow, flux density, the length of electrode gap and the constriction length of nozzle.

  • PDF