• 제목/요약/키워드: Area-specific resistance

검색결과 210건 처리시간 0.024초

비만에서 장내 미생물 균총의 역할과 발효 한양의 활용 (The Role of Gut Microbiota in Obesity and Utilization of Fermented Herbal Extracts)

  • 박정현;김호준;이명종
    • 한방비만학회지
    • /
    • 제9권1호
    • /
    • pp.1-14
    • /
    • 2009
  • Complex microbial communities play an important role in the human health and co-evolved with human in the form of symbiosis. Many literatures provide new evidences that the increased prevalence of obesity cannot be attributed solely to changes in the human genome, nutritional habits, or reduction of physical activity in our daily lives. The intestinal flora was recently proposed as an environmental factor responsible for the control of body weight and energy metabolism. A number of studies suggest that the modulation of gut microbiota affects host metabolism and has an impact on energy storage and demonstrated a role for the gut microbiota in weight gain, fat increase, and insulin resistance. Variations in microbiota composition are found in obese humans and mice and the microbiota from an obese mouse confers an obese phenotype when transferred to an axenic mouse. As well, the gut microbial flora plays a role in converting nutrients into calories. Specific strategies for modifying gut microbiota may be a useful means to treat or prevent obesity. Dietary modulations of gut microbiota with a view to increasing bifidobacteria have demonstrated to reduce endotoxemia and improve metabolic diseases such as obesity. The fermentation of medicinal herbs is intended to exert a favorable influence on digestability, bioavailability and pharmacological activity of herbal extract. Therefore we also expect that the fermented herbal extracts may open up a new area to treat obesity through modulating gut microbiota.

  • PDF

물과 에탄올의 혼합용매로부터 니켈 미분말의 합성 및 산화특성 (Synthesis of nickel fine powder in the mixed solvent of water and ethanol and ie oxidation behaviors)

  • 이상근;최은영;이윤복;김광호;박희찬
    • 한국결정성장학회지
    • /
    • 제13권3호
    • /
    • pp.139-144
    • /
    • 2003
  • 유기용매로서 에탄올을 함유한 염화니켈 수용액으로부터 니켈 미분말을 제조하고 이들의 산화특성을 검토하였다. 에탄올을 함유한 염화니켈 수용액에서 히드라진의 환원반응은 반응온도에 크게 의존하였다. 히드라진에 의한 환원반응시간은 반응온도가 증가함에 따라 감소하였다. 반응온도를 제어함으로써 입경이 0.1 $\mu\textrm{m}$-1.0 $\mu\textrm{m}$ 범위를 갖는 구형 분말을 얻을 수 있었다. 또한, 반응온도가 증가함에 따라 입경은 다소 증가하였고 조대한 입자들의 존재로 인하여 넓은 입도 분포를 나타내었다. $60^{\circ}C$에서 합성된 니켈 분말의 평균 입경과 비표면적은 각각 0.3 $\mu\textrm{m}$와 31.8 $m^2$/g이었다. $300^{\circ}C$에서 니켈 분말의 중량감소는 $Ni(OH)_2$의 분해반응에 기인한 것이다. $200^{\circ}C$ 공기중에서 가열처리한 경우 내산화성은 합성 분말보다 현저하였다

직류 전기도금을 이용한 고체산화물 연료전지 금속연결재용 페라이트계 스테인리스 스틸의 코발트 보호막 코팅 효과 (Effects of Cobalt Protective Coating Prepared by DC Electroplating on Ferritic Stainless Steel for SOFC Interconnect)

  • 홍종은;임탁형;송락현;이승복;신동열;유영성;이덕열
    • 한국수소및신에너지학회논문집
    • /
    • 제20권2호
    • /
    • pp.116-124
    • /
    • 2009
  • We investigated the influences of cobalt coating deposited by DC electroplating on the ferritic stainless steel, STS 430, as a protective layer on a metallic interconnect for SOFC applications. Cobalt coated STS 430 revealed a uniform and denser-packing oxide surface and a reduced growth rate of $Cr_2O_3$ scales after oxidation at $800^{\circ}C$in air. Cobalt coating layer was oxidized to $CoCo_2O_4$ and Co containing mixed oxide spinels such as $Co_2CrO_4$, $CoCr_2O_4$, and $CoCrFeO_4$. The area specific resistance value of Co coated sample was $0.020\;{\Omega}cm^2$ lower than that of uncoated at $800^{\circ}C$ in air during 500 h. After 1000 h oxidation, cobalt oxide coating layer suppressed chromium outward diffusion.

Biomechanical Analysis at the Start of Bobsleigh Run in Preparation for the 2018 Pyeongchang Winter Olympics

  • Park, Seungbum;Lee, Kyungdeuk;Kim, Daewoong;Yoo, Junghyeon;Jung, Jaemin;Park, Kyunghwan
    • 한국운동역학회지
    • /
    • 제27권4호
    • /
    • pp.239-245
    • /
    • 2017
  • Objective: The bobsleigh shoes used in the start section are one of the most important equipment for improving the competition. Despite the importance of the start section, there are no shoes that are specific for bobsleigh athletes in Korea and Korean athletes have to wear sprint spike shoes and practice the start instead of wearing bobsleigh shoes. The objective of the present study was to provide data for improving the performance of Korean bobsleigh athletes by investigating the differences in their split time, plantar pressure, and forefoot bending angle based on skill levels at the start of a run under the same conditions as training conditions. Method: Six Korean bobsleigh athletes were divided into two groups, superior (n=3) and non-superior (n=3). A digital speedometer measured the split time at the start; the Pedar-X system (Novel, Germany) measured plantar pressure. Plantar pressures and split times were measured as the athletes pushed a bobsleigh and sprinted at full speed from the start line to the 10-m mark on the bobsleigh track. An ultra-high-speed camera was used to measure the forefoot bending angle during the start phase. Results: Significant between-group differences were found in split times (p<.000; superior = 2.38 s, non-superior = 2.52 s). The superior group had a larger rearfoot (p<.05) contact area, maximum rearfoot force (p<.01), and a larger change in angles 3 and 4 (p<.05). Conclusion: At the start of a bobsleigh run, proper use of the rearfoot for achieving effective driving force and increasing frictional resistance through a wider frictional force can shorten start time.

피치계 활성탄소섬유기반 가스센서 제조 및 유해가스 감응 특성 (Preparation of Gas Sensor from Pitch-based Activated Carbon Fibers and Its Toxic Gas Sensing Characteristics)

  • 김민일;이영석
    • 공업화학
    • /
    • 제25권2호
    • /
    • pp.193-197
    • /
    • 2014
  • 피치계 활성탄소섬유의 유해가스 감응특성을 알아보고자 피치계 활성탄소섬유와 폴리비닐알코올(PVA)을 이용하여 가스센서용 전극을 제조하였다. 제조된 가스센서용 활성탄소섬유 전극의 물리화학적 특성은 주사전자현미경(SEM) 및 비표면적 측정기(BET)를 이용하여 분석하였다. 또한, 전극의 유해가스 감응특성은 $NH_3$, NO 및 $CO_2$와 같은 여러 유독가스를 이용하여 확인하였다. 가스센서용 활성탄소섬유 전극의 비표면적은 바인더인 PVA에 의하여 활성탄소섬유보다 33% 감소하였지만, 전극의 기공크기분포는 PVA에 의하여 크게 영향을 받지 않았다. 가스센서용 활성탄소섬유 전극은 반도체 기반 가스센서와는 다르게 전자도약에 의해서 유해가스를 감응하였다. 본 연구에서, 활성탄소섬유 전극의 저항은 100 ppm의 $NH_3$ 유해가스에 대하여 7.5% 감소하였으며, 그 $NH_3$ 가스 감응특성이 다른 유해가스보다 뛰어남을 확인하였다.

Enhancement of Power Conversion Efficiency from Controlled Nanostructure in Polymer Bulk-Hetero Junction Solar Cells

  • Wang, Dong-Hwan;Park, O-Ok;Park, Jong-Hyeok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.76-76
    • /
    • 2011
  • Polymer-fullerene based bulk heterojunction (BHJ) solar cells can be fabricated in large area using low-cost roll-to-roll manufacturing methods. However, because of the low mobility of the BHJ materials, there is competition between the sweep-out of the photogenerated carriers by the built-in potential and recombination within the thin BHJ film [12-15]. Useful film thicknesses are limited by recombination. Thus, there is a need to increase the absorption by the BHJ film without increasing film thickness. Metal nanoparticles exhibit localized surface plasmon resonances (LSPR) which couple strongly to the incident light. In addition, relatively large metallic nanoparticles can reflect and scatter the light and thereby increase the optical path length within the BHJ film. Thus, the addition of metal nanoparticles into BHJ films offers the possibility of enhanced absorption and correspondingly enhanced photo-generation of mobile carriers. In this work, we have demonstrated several positive effects of shape controlled Au and Ag nanoparticles in organic P3HT/PC70BM, PCDTBT/PC70BM, Si-PCPDTBT/PC70BM BHJ-based PV devices. The use of an optimized concentration of Au and Ag nanomaterials in the BHJ film increases Jsc, FF, and the IPCE. These improvements result from a combination of enhanced light absorption caused by the light scattering of the nanomaterials in an active layer. Some of the metals induce the plasmon light concentration at specific wavelength. Moreover, improved charge transport results in low series resistance.

  • PDF

Electrochemical Properties of La4Ni3O10-GDC Composite Cathode by Facile Sol-gel Method for IT-SOFCs

  • Choi, Sihyuk;Kim, Guntae
    • 한국세라믹학회지
    • /
    • 제51권4호
    • /
    • pp.265-270
    • /
    • 2014
  • Among the Ruddlesden-Popper series, $La_4Ni_3O_{10}$ has received widespread attention as a promising cathode material by reason of its favorable properties for realizing high performance of intermediate temperature solid oxide fuel cells (IT-SOFCs). The $La_4Ni_3O_{10}$ cathode is prepared using the facile sol-gel method by employing tri-blockcopolymer (F127) to obtain a single phase in a short sintering time. There are no reactions between the $La_4Ni_3O_{10}$ cathode and the $Ce_{0.9}Gd_{0.1}O_{2-\delta}$ (GDC) electrolyte upon sintering at $1000^{\circ}C$, indicating that the $La_4Ni_3O_{10}$ cathode has good chemical compatibility with the GDC electrolyte. The maximum electrical conductivity of $La_4Ni_3O_{10}$ reaches approximately 240 S $cm^{-1}$ at $100^{\circ}C$ and gradually decreases with increasing temperaturein air atmosphere. The area specific resistance value of $La_4Ni_3O_{10}$ composite with 40 wt% GDC is $0.435{\Omega}cm^2$ at $700^{\circ}C$. These data allow us to propose that the $La_4Ni_3O_{10}$-GDC composite cathode is a good candidate for IT-SOFC applications.

Predictive value of C-reactive protein in response to macrolides in children with macrolide-resistant Mycoplasma pneumoniae pneumonia

  • Seo, Young Ho;Kim, Jang Su;Seo, Sung Chul;Seo, Won Hee;Yoo, Young;Song, Dae Jin;Choung, Ji Tae
    • Clinical and Experimental Pediatrics
    • /
    • 제57권4호
    • /
    • pp.186-192
    • /
    • 2014
  • Purpose: The prevalence of macrolide-resistant Mycoplasma pneumoniae (MRMP) has increased worldwide. The aim of this study was to estimate the proportion of MRMP in a tertiary hospital in Korea, and to find potential laboratory markers that could be used to predict the efficacy of macrolides in children with MRMP pneumonia. Methods: A total of 95 patients with M. pneumoniae pneumonia were enrolled in this study. Detection of MRMP was based on the results of specific point mutations in domain V of the 23S rRNA gene. The medical records of these patients were reviewed retrospectively and the clinical course and laboratory data were compared. Results: The proportion of patients with MRMP was 51.6% and all MRMP isolates had the A2063G point mutation. The MRMP group had longer hospital stay and febrile period after initiation of macrolides. The levels of serum C-reactive protein (CRP) and interleukin-18 in nasopharyngeal aspirate were significantly higher in patients who did not respond to macrolide treatment. CRP was the only significant factor in predicting the efficacy of macrolides in patients with MRMP pneumonia. The area under the curve for CRP was 0.69 in receiver operating characteristic curve analysis, indicating reasonable discriminative power, and the optimal cutoff value was 40.7 mg/L. Conclusion: The proportion of patients with MRMP was high, suggesting that the prevalence of MRMP is rising rapidly in Korea. Serum CRP could be a useful marker for predicting the efficacy of macrolides and helping clinicians make better clinical decisions in children with MRMP pneumonia.

Sol-Gel 방법으로 제작된 SnO2 seed layer를 적용한 고반응성 ZnO 가스 센서 (High-sensitivity ZnO gas Sensor with a Sol-gel-processed SnO2 Seed Layer)

  • 김상우;박소영;한태희;이세형;한예지;이문석
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.420-426
    • /
    • 2020
  • A metal oxide semiconductor gas sensor is operated by measuring the changes in resistance that occur on the surface of nanostructures for gas detection. ZnO, which is an n-type metal oxide semiconductor, is widely used as a gas sensor material owing to its high sensitivity. Various ZnO nanostructures in gas sensors have been studied with the aim of improving surface reactions. In the present study, the sol-gel and vapor phase growth techniques were used to fabricate nanostructures to improve the sensitivity, response, and recovery rate for gas sensing. The sol-gel method was used to synthesize SnO2 nanoparticles, which were used as the seed layer. The nanoparticles size was controlled by regulating the process parameters of the solution, such as the pH of the solution, the type and amount of solvent. As a result, the SnO2 seed layer suppressed the aggregation of the nanostructures, thereby interrupting gas diffusion. The ZnO nanostructures with a sol-gel processed SnO2 seed layer had larger specific surface area and high sensitivity. The gas response and recovery rate were 1-7 min faster than the gas sensor without the sol-gel process. The gas response increased 4-24 times compared to that of the gas sensor without the sol-gel method.

순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(III) - 에지 용접 특성 - (A Study of Weldability for Pure Titanium by Nd:YAG Laser(III) - Weld Properties of Edge Welding -)

  • 김종도;길병래;곽명섭;송무근
    • Journal of Welding and Joining
    • /
    • 제27권6호
    • /
    • pp.74-79
    • /
    • 2009
  • Titanium and titanium alloy can be reproduced immediately even if oxide films($TiO_2$) break apart in sea water. Therefore, since titanium demonstrates large specific strength and outstanding resistance to stress corrosion cracking, crevice corrosion, pitting and microbiologically influenced corrosion in sea water environment, it has been widely applied to heat exchanger for ships. In particular, with excellent elongation, pure titanium may be deemed as optimal material for production of heat exchanger plate which is used with wrinkles formed for efficient heat exchange. Conventional plate type heat exchanger prevented leakage of liquid through insertion of gasket between plates and mechanical tightening by bolts and nuts, but in high temperature and high pressure environment, gasket deterioration and leakage occur, so heat exchanger for LPG re-liquefaction device etc do not use gasket but weld heat exchanger plate for use. On the other hand, since welded plate cannot be separated, it is important to obtain high quality reliable welds. In addition, for better workability and production performance, lasers that can obtain weldment with large aspect ratio and demonstrate fast welding speed even in atmospheric condition not in vacuum condition are used in producing products. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through quantitative analysis of oxygen and nitrogen and measurement of hardness as fundamental experiment for the evaluation of titanium laser welding, and evaluated the welding performance and mechanical properties of butt welding. This study welded specimens in various conditions by using laser and GTA welding machine to apply edge welding to heat exchanger, and evaluated the mechanical strength through tensile stress test. As a result of tensile test, laser weldment demonstrated tensile strength 4 times higher than GTA welds, and porosity could be controlled by increasing and decreasing slope of laser power at overlap area.