• Title/Summary/Keyword: Area fraction

Search Result 734, Processing Time 0.025 seconds

Improved Sensitivity of an NO Gas Sensor by Chemical Activation of Electrospun Carbon Fibers

  • Kang, Seok-Chang;Im, Ji-Sun;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.1
    • /
    • pp.21-25
    • /
    • 2011
  • A novel electrode for an NO gas sensor was fabricated from electrospun polyacrylonitrile fibers by thermal treatment to obtain carbon fibers followed by chemical activation to enhance the activity of gas adsorption sites. The activation process improved the porous structure, increasing the specific surface area and allowing for efficient gas adsorption. The gas sensing ability and response time were improved by the increased surface area and micropore fraction. High performance gas sensing was then demonstrated by following a proposed mechanism based on the activation effects. Initially, the pore structure developed by activation significantly increased the amount of adsorbed gas, as shown by the high sensitivity of the gas sensor. Additionally, the increased micropore fraction enabled a rapid sensor response time due to improve the adsorption speed. Overall, the sensitivity for NO gas was improved approximately six-fold, and the response time was reduced by approximately 83% due to the effects of chemical activation.

Fabrication of Mesoporous Carbon Nanofibers for Electrical Double-Layer Capacitors (전기 이중층 커패시터용 메조 다공성 탄소 나노섬유의 제조)

  • Lee, Do-Young;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.617-623
    • /
    • 2017
  • Mesoporous carbon nanofibers as electrode material for electrical double-layer capacitors(EDLCs) are fabricated using the electrospinning method and carbonization. Their morphologies, structures, chemical bonding states, porous structure, and electrochemical performance are investigated. The optimized mesoporous carbon nanofiber has a high sepecific surface area of $667m^2\;g^{-1}$, high average pore size of 6.3 nm, and high mesopore volume fraction of 80 %, as well as a unifom network structure consiting of a 1-D nanofiber stucture. The optimized mesoporous carbon nanofiber shows outstanding electrochemical performance with high specific capacitance of $87F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$, high-rate performance ($72F\;g^{-1}$ at a current density of $20.0A\;g^{-1}$), and good cycling stability ($92F\;g^{-1}$ after 100 cycles). The improvement of the electrochemical performance via the combined effects of high specific surface area are due to the high mesopore volume fraction of the carbon nanofibers.

Comparison of Spray Characteristics according to Physical Properties of Ethanol/Gasoline Blended Fuel (에탄올/가솔린 혼합연료의 물리적 특성에 따른 분무 특성 비교)

  • Kim, Woong Il;Kim, Youngkun;Lee, Hwang Bok;Lee, Kihyung
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.109-115
    • /
    • 2017
  • The aim of this study is to investigate the effect of physical properties of fuels on spray characteristics in the gasoline direct injection system. Injection rate, spray visualization, and spray pattern experiments were performed to analyze the spray characteristics of ethanol, gasoline, and ethanol/gasoline blends. We measured injection rate of each fuel via the Bosch method. The spray visualization experiment was also carried out at atmospheric pressure using a high-speed camera. Finally, the average of drop surface area per unit volume was measured using the optical patternator. The experimental results from Bosch method showed that peak injection rate increased when the volume fraction of ethanol increased. In addition, higher viscosity of ethanol than that of gasoline leads to longer injection delay. At the initial injection region before reaching 0.8 ms, the spray tip penetration becomes longer as increasing the volume fraction of ethanol, but reversely shorter after 0.8 ms. It was found that ethanol makes spray angle become larger. The surface area per unit volume of the drop was decreased as the distance from the injection tip or the concentration of the gasoline increased.

Heteroface p-$Al_{x}Ga_{1-x}As/p-GaAs/n-GaAs/n^{+}$-GaAs Solar Cell Grown by MOCVD (MOCVD를 이용한 Heteroface p-$Al_{x}Ga_{1-x}As/p-GaAs/n-GaAs/n^{+}$-GaAs 태양전지의 개발)

  • 창기근;임성규
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.1
    • /
    • pp.30-39
    • /
    • 1991
  • The influence of physical parameters (Al mole fraction, thickness, doping concentration) in the window and emitter on the efficiency characteristics of heteroface p-$Al_{x}Ga_{1-x}As/p-GaAs/n-GaAs/n^{+}$-GaAs solar cell is investigated. The maximum efficiency theoretically calculated in this device is obtained when a thickness of the window is in a range of (400-1000))$\AA$and a thickness/doping concentration of the emitter is in a range of (0.5-0.8)$\mu$m/(1-7)${\times}10^{17}cm^{-3}$, respectively. Also is the efficiency improved according to the increase of Al mole fraction in the indirect gap window(0.41${\le}x{\le}1.0$). The optimum designed heteroface cell with an area of 0.165cm$^2$fabricated using MOCVD exhibits an active area conversion efficiency of 17%, having a short circuit current density of 21.2mA/cm\ulcorner an open circuit voltage of 0.94V, and a fill factor of 0.75 under ELH-100mW/cm$^2$illumination.

  • PDF

Effects of Heat Input and Preheat/interpass Temperature on Strength and Impact Toughness of Multipass Welded Low Alloy Steel Weld Metal (다층용접한 저합금 용접금속의 강도와 인성에 미치는 입열량 및 예열/패스간 온도의 영향)

  • Bang, Kook-soo;Jung, Ho-shin;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.481-487
    • /
    • 2015
  • The effects of the heat input and preheat/interpass temperatures on the tensile strength and impact toughness of multipass welded weld metal were investigated and interpreted in terms of the recovery of the alloying elements and microstructure. Increases in both the heat input and preheat/interpass temperatures decreased the tensile strength of the weld metal. A lower recovery of alloying elements, especially Mn and Si, and smaller area fraction of acicular ferrite in the weld metal were observed in higher heat input welding, resulting in a lower tensile strength. In contrast, only a microstructure difference was observed at a higher preheat/interpass temperature. The impact toughness of the weld metal gradually increased with an increase in the heat input because of the lower tensile strength. However, it decreased again when the heat input was larger than 45 kJ/cm because of the much smaller area fraction of acicular ferrite. No effect of the preheat/interpass temperature on the impact toughness was observed. The formation of a weld metal heat-affect zone showed little effect on the impact toughness of the weld metal in this experiment.

Fractionated Volatile Flavor Components of Soybean Paste by Dynamic Headspace Method (Dynamic Headspace법에 의한 분획별 된장의 향기 성분)

  • 주광지;신묘란
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.2
    • /
    • pp.305-311
    • /
    • 1999
  • The volatile compounds of soybean pastes(home made soondoenjang, commercial doenjang) were classified into basic, acidic and neutral fractions by dynamic headspace method. The fractionated flavor isolates were analyzed and identified by gas chromatography mass spectrometry. Each peak area of the flavor components was quantified at its ratio to the peak area of internal standard. Sixty one compounds from home made soondoenjang, and forty three compounds from commercial doenjang were identified. The different distribution of volatile compounds between the two soybean paste samples was observed. Ten pyrazines and benzothiazole were identified in the basic fraction of home made soondoenjang. On the other hand, trimethylpyrazine was the only one of nitrogen containing compounds in the commercial doenjang, which was made from soybean(28.3%), wheat(22.2%) and alcohols. The factors which influenced the levels of these identified compounds were considered to be the starting materials of soybean paste. Alcohols, esters and aldehydes in the neutral fraction of both samples were seemed to be characterisitic soybean paste flavor and showed much higher quantities than those of the basic or acidic fractions. Furfural in the commercial doenjang was the highest content (45.28ppm) among all of the compounds identified in the samples.

  • PDF

NUMERICAL INVESTIGATION ON HYDRODYNAMIC LUBRICATION CHARACTERISTICS OF MICRO DIMPLE TEXTURED SURFACES (미세 딤플 가공 표면의 수력학적 윤활특성에 대한 수치해석)

  • Hong, Sa-Hoon;Lee, Jae-Ung;Cho, Min-Haeng;Lee, Seong-Hyuk
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.56-61
    • /
    • 2009
  • This study deals with the numerical investigation on two-dimensional lubrication characteristics of micro-dimple shapes fabricated on solid surfaces by using the commercial CFD code (Fluent V.6.3) to examine the influence of micro dimple depth and width on the reduction in friction under the sliding plate condition. In addition, single and multiple dimple arrays are simulated, all for a fixed area fraction of dimple on the surface. As a result, it is found that the existence of micro-dimpled surface makes it possible to substantially reduce the friction forces exerted on the surfaces, and such an optimum dimple depth would be present because the dimple depth larger than the optimum value did no longer affect the reduction in shear stresses, indicating that the reduction of friction is likely to be associated with inner flows of lubricant inside dimples. Moreover, it is observed that at the fixed area fraction, the friction reduction increases with the increase of dimple diameter.

Active Solar Heating System Design and Analysis for the Zero Energy Solar House (제로에너지 솔라하우스의 난방/급탕용 태양열 시스템 설계 및 분석)

  • Baek, N.C.;Yoo, C.K.;Yoon, E.S.;Yoo, J.Y.;Yoon, J.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • This study is on the design and evaluation of Zero Energy Solar House(ZeSH) including active solar heating system. Various innovative technologies such as super insulation, passive solar systems, super window, ventilation heat recovery system...etc were analyzed by individual and combination for the success of ZeSH. The ESP-r simulation program was used for this. Simulation results shows that almost 77% of heating load can be reduced with the following configuration of 200mm super insulation, super windows, passive solar system and 0.3 ventilation rate per hour. Active solar heating system (ASHS) was designed for the rest of the heating load including hot water heating load. The solar assisted heat pump is used for the auxiliary heating device in order to use air conditioner but not included in this study. The yearly solar fraction is 87% with a solar collector area of $28m^2$. The parametric studies as the influence of storage volume and collector area on the solar fraction was analyzed.

Characteristics and Photocatalytic Properties of TiO2 Nanoparticles Synthesized by Thermal Decomposition Process (기상 합성 TiO2 나노입자의 특성 및 광촉매 특성)

  • Lee, Myung-Hwoon;Kim, Min-Su;Jurng, Jong-Soo;Chin, Sung-Min;Park, Eun-Seuk;Lee, Gyo-Woo
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.577-584
    • /
    • 2010
  • The generation of $TiO_2$ nanoparticles by a thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out experimentally using a tubular electric furnace at various synthesis temperatures (700, 900, 1100 and $1300^{\circ}C$) and precursor heating temperatures (80, 95 and $110^{\circ}C$). Effects of degree of crystallinity, surface area and anatase mass fraction of those $TiO_2$ nanoparticles on photocatalytic properties such as decomposition of methylene blue was investigated. Results show that the primary particle diameter obtained from thermal decomposition of TTIP was considerably smaller than the commercial photocatalyst (Degussa, P25). Also, those specific surface areas were more than 134.4 $m^2$/g. Resultant $TiO_2$ nanoparticles showed improved photocatalytic activity compared with Deggusa P25. This is contributed to the higher degree of crystallinity, surface area and anatase mass fraction of $TiO_2$ nanoparticles compared with P25.

Anatomical variations of trabecular bone structure in intraoral radiographs using fractal and particles count analyses

  • Amer, Maha Eshak;Heo, Min-Suk;Brooks, Sharon L.;Benavides, Erika
    • Imaging Science in Dentistry
    • /
    • v.42 no.1
    • /
    • pp.5-12
    • /
    • 2012
  • Purpose : This study was performed to evaluate possible variations in maxillary and mandibular bone texture of normal population using the fractal analysis, particles count, and area fraction in intraoral radiographs. Materials and Methods : Periapical radiographs of patients who had full mouth intraoral radiographs were collected. Regions of interest ($100{\times}100$ pixels) were located between the teeth of the maxillary anterior, premolar, and molar area, as well as the mandibular anterior, premolar, and molar areas. The fractal dimension (FD) was calculated by using the box counting method. The particle count (PC) and area fraction (AF) analyses were also performed. Results : There was no significant difference in the FD values among the different groups of age, gender, upper, and lower jaws. The mean FD value was $1.49{\pm}0.01$. The mean PC ranged from 44 to 54, and the mean AF ranged from 10.92 to 11.85. The values of FD, PC, and AF were significantly correlated with each other except for the upper molar area. Conclusion : According to the results, patients with normal trabecular pattern showed a FD of approximately 1.5. Based on these results, further investigation would be recommended if the FD value of patient significantly differenct from this number, since the alteration of this value indicates microstructural modification of trabecular pattern of the jaws. Additionally, with periapical radiographs, simple and cost-effective, PC and AF could be used to assess the deviation from the normal.