DOI QR코드

DOI QR Code

Characteristics and Photocatalytic Properties of TiO2 Nanoparticles Synthesized by Thermal Decomposition Process

기상 합성 TiO2 나노입자의 특성 및 광촉매 특성

  • 이명훈 (한국환경공단 대기관리처 총량정책지원팀) ;
  • 김민수 (한국과학기술연구원 환경본부) ;
  • 정종수 (한국과학기술연구원 환경본부) ;
  • 진성민 (한국과학기술연구원 환경본부) ;
  • 박은석 (한국과학기술연구원 환경본부) ;
  • 이교우 (전북대학교 기계설계공학부)
  • Received : 2010.01.14
  • Accepted : 2010.04.06
  • Published : 2010.05.31

Abstract

The generation of $TiO_2$ nanoparticles by a thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out experimentally using a tubular electric furnace at various synthesis temperatures (700, 900, 1100 and $1300^{\circ}C$) and precursor heating temperatures (80, 95 and $110^{\circ}C$). Effects of degree of crystallinity, surface area and anatase mass fraction of those $TiO_2$ nanoparticles on photocatalytic properties such as decomposition of methylene blue was investigated. Results show that the primary particle diameter obtained from thermal decomposition of TTIP was considerably smaller than the commercial photocatalyst (Degussa, P25). Also, those specific surface areas were more than 134.4 $m^2$/g. Resultant $TiO_2$ nanoparticles showed improved photocatalytic activity compared with Deggusa P25. This is contributed to the higher degree of crystallinity, surface area and anatase mass fraction of $TiO_2$ nanoparticles compared with P25.

Keywords

References

  1. Nishide, T., Sato, M., Hara, H., 2000, Crystal structure and optical property of $TiO_2$ gels and films prepared from Ti-edta complexes as titania precursors, J. Mater. Sci., 35, 465-469. https://doi.org/10.1023/A:1004731804075
  2. Nagaveni, K., Silvalingam, G., Heged, M. S., Madras, G., 2004, Solar photocatalytic degradation of dyes: High activity of combustion synthesized nano $TiO_2$, Appl. Catal. B-environ., 48, 83-93. https://doi.org/10.1016/j.apcatb.2003.09.013
  3. Sivalingam, G., Nagaveni, K., Hegde, M. S., Madras, G., 2003, Photocatalytic degradation of various dyes by combustion synthesized nano anatase $TiO_2$, Appl. Catal. B-environ., 45, 23-38. https://doi.org/10.1016/S0926-3373(03)00124-3
  4. Gratzel, M., 2001, Sol-gel processed $TiO_2$ films for photovoltaic application, J. Sol-Gel Sci. Technol., 22, 7-13. https://doi.org/10.1023/A:1011273700573
  5. Choi, S. M., Lee, G. W., 2008, Phase transformation characteristics of combustion -synthesized $TiO_2$ nanoparticle, Trans. of the KSME(B). 32, 224-230.
  6. Nakaso, K., Fujimoto, T., Seto, T., Shimada, M., Okuyama, K., Lunden, M., 2001, Size distribution change of titania nano-particle agglomerates generated by gas phase reaction, agglomeration, and sintering, Aerosol Sci. Tech., 35, 929-947. https://doi.org/10.1080/02786820126857
  7. Nakaso, K., Okuyama, K., Shimada, M., Pratsinis, S. E., 2003, Effect of reaction temperature on CVD-made $TiO_2$ primary particle diameter, Chem. Eng. Sci., 58, 3327-3335. https://doi.org/10.1016/S0009-2509(03)00213-6
  8. Jang, H. D., Jeong, J., 1995, The effects of temperature on particle size in gas-phase production of $TiO_2$, Aerosol Sci. Tech. 23, 553-560. https://doi.org/10.1080/02786829508965337
  9. Kim, S. Y., Yu, J. H., Lee, J. S., Kim, J. R., Kim, B. K., 1999, Synthesis of nanosized $TiO_2$ powder by chemical vapor condensation process (1), J. Kor. Ceram. Soc., 36, 742-750.
  10. Jung, S. C., Kim, S. C., Seo, S. G., 2001, Photocatalytic activity of the $TiO_2$ film grown by chemical vapor deposition, J. KIChE., 39, 385-389.
  11. Okuyama, K., Jeung, J. T., Kousaka, Y., Nguyen, V., Wu, J. J., Flagan, C., 1989, Experimental control of ultrafine $TiO_2$ particle generation from thermal decomposition of titanium tetraisopropoxide vapor, Chem. Eng. Sci. 44, 1369-1375. https://doi.org/10.1016/0009-2509(89)85010-9
  12. Jang, H. D., Kim, S. K., Kim, S. J., 2001, Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties, J. Nanopart. Res., 3, 141-147. https://doi.org/10.1023/A:1017948330363
  13. Spurr, R. A., Myers, H., 1957, Quantitative analysis of anatase-to-rutile mixture with an X-ray diffractometer, Anal. Chem., 29, 760-761. https://doi.org/10.1021/ac60125a006
  14. German, R. M., 1994, Powder metallurgy science, 2nd edition, metal powder industries federation, New Jersey, 69.
  15. Okada, K., Yamamoto, N., Kameshima, Y., Yasumori, A., Mackenzie, K. J. D., 2001, Effect of silica additive on the anatase-of -rutile phase transition, J. Am. Ceram. Soc., 84, 1591-1596. https://doi.org/10.1111/j.1151-2916.2001.tb00882.x