• Title/Summary/Keyword: Area Throughput

Search Result 459, Processing Time 0.026 seconds

An Efficient Multi-User Resource Allocation Scheme for Future IEEE 802.11 LRLP Communications (미래 IEEE 802.11 LRLP 통신을 위한 효율적인 다중 사용자 자원할당 기법)

  • Ahn, Woojin;Kim, Ronny Yongho
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.232-237
    • /
    • 2016
  • As a possible standardization of wireless local area network (WLAN), IEEE 802.11 LRLP is under discussion in order to support long range and low power (LRLP) communication for internet of things (IoT) including drones and many other IoT devices. In this paper, an efficient adaptive resource unit allocation scheme for uplink multiuser transmission in IEEE 802.11 LRLP networks is proposed. In the proposed scheme, which adopts OFDMA random access based transmission scheme of IEEE 802.11ax, in order to enhance the efficiency of the slotted OFDMA random access, access point (AP) traces the history of the sizes of successfully transmitted uplink data, and adjusts the sizes of resource units for the next uplink multiuser transmission adaptively. Our simulation results corroborate that the proposed scheme significantly improves the system throughput.

A 200-MHZ@2.5-V Dual-Mode Multiplier for Single / Double -Precision Multiplications (단정도/배정도 승산을 위한 200-MHZ@2.5-V 이중 모드 승산기)

  • 이종남;박종화;신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1143-1150
    • /
    • 2000
  • A dual-mode multiplier (DMM) that performs single- and double-precision multiplications has been designed using a $0.25-\mum$ 5-metal CMOS technology. An algorithm for efficiently implementing double-precision multiplication with a single-precision multiplier was proposed, which is based on partitioning double-precision multiplication into four single-precision sub-multiplications and computing them with sequential accumulations. When compared with conventional double-precision multipliers, our approach reduces the hardware complexity by about one third resulting in small silicon area and low-power dissipation at the expense of increased latency and throughput cycles. The DMM consists of a $28-b\times28-b$ single-precision multiplier designed using radix-4 Booth receding and redundant binary (RB) arithmetic, an accumulator and a simple control logic for mode selection. It contains about 25,000 transistors on the area of about $0.77\times0.40-m^2$. The HSPICE simulation results show that the DMM core can safely operate with 200-MHZ clock at 2.5-V, and its estimated power dissipation is about 130-㎽ at double-precision mode.

  • PDF

Predicted Optimum Efficiency due to Changes in the Design Parameters of the Small Electrostatic Precipitator (설계인자 변화에 따른 소형 전기집진장치의 최적효율 예측)

  • Suh, Jeong-Min;Yi, Pyong-In;Jung, Moon-Sub;Park, Jeong-Ho;Lim, Woo-Taik;Park, Chool-Jae;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.22 no.9
    • /
    • pp.1187-1197
    • /
    • 2013
  • The result of a small electrostatic precipitator which is in order to decrease indoor air pollution for optimal efficiency was shown as follows. Although the closer distance between the discharge electrode and dust collecting electrode shows the better throughput efficiency by forming strong electrostatic Field, it does not have profound impact in case of optimal dust collecting area. G.P(gas passage) which is the distance from dust collecting electrode to dust collecting electrode is a crucial factor to decide dust collecting efficiency. The narrower distance of G.P shows the better throughput efficiency whereas it decreases when the distance is too narrow since sparks ensue by increasing the capacity of electrostatic charging system 5 mm regards as optimal efficiency in this experiment. Although the higher voltage shows the higher dust collecting efficiency overall, the experiment was not able to keep performing since the sparks which decrease dust collecting efficiency ensue over 40 kV. The efficient and safe voltage state is considered 3.6 kV in this experiment. The most crucial factor for dust collecting efficiency of an electrostatic precipitator which is in order to decrease indoor air pollution is applied voltage. In addition, optimal raw gas flow rate(2.4 m/sec) is more important factor than the excessive increase of dust collecting area.

A Congestion release Advertisement Method to Improve the IEEE 802.17 Resilient Packet Ring (체증해제 통보에 방식에 의한 IEEE 802.17 레질런트 패킷 링의 성능개선 연구)

  • Kim Tae-joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.9B
    • /
    • pp.581-590
    • /
    • 2005
  • The IEEE 802.17 Resilient Packet Ring Working Group develops standards to support the development and deployment of Resilient Packet Ring networks in Local, Metropolitan, and Wide Area Networks for resilient and efficient transfer of data Packets at rates scalable to many gigabits Per second. It was known that the fairness algorithm of the IEEE 802.17 Resilient Packet Ring suffers from throughput degradation under an unbalanced overload. This Paper proposes a congestion release advertisement method to improve this throughput degradation and discusses its performance. Under the proposed method, a congested node decides whether its congestion is released or not. If released, it advertises the congestion release to upstream nodes, and then upstream nodes transmit their traffic without uy regulation. The proposed method is compatible with the legacy fairness algorithm.

Sphere Decoding Algorithm and VLSI Implementation Using Two-Level Search (2 레벨 탐색을 이용한 스피어 디코딩 알고리즘과 VLSI 구현)

  • Huynh, Tronganh;Cho, Jong-Min;Kim, Jin-Sang;Cho, Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.104-110
    • /
    • 2008
  • In this paper, a novel 2-level-search sphere decoding algorithm for multiple-input multiple-output (MIMO) detection and its VLSI implementation are presented. The proposed algorithm extends the search space by concurrently performing symbol detection on 2 level of the tree search. Therefore, the possibility of discarding good candidates can be avoided. Simulation results demonstrate the good performance of the proposed algorithm in terms of bit-error-rate (BER). From the proposed algorithm, an efficient very large scale integration (VLSI) architecture which incorporates low-complexity and fixed throughput features is proposed. The proposed architecture supports many modulation techniques such as BPSK, QPSK, 16-QAM and 64-QAM. The sorting block, which occupies a large portion of hardware utilization, is shared for different operating modes to reduce the area. The proposed hardware implementation results show the improvement in terms of area and BER performance compared with existing architectures.

An Efficient Range Query Processing of Distributed Moving Object (분산 이동 객체 데이터베이스의 효율적인 범위 질의 처리)

  • Jeon, Se-Gil;Woo, Chan-Il
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • Recently, the location based service for moving customers is becoming one of the most important service in mobile communication area and for moving object applications, there are lots of update operations and such update loads are concentrated on some particular area unevenly. The primary processing of LBS application is spatio-temporal range queries and to improve the throughput of spatio-temporal range queries, the time of disk I/O in query processing should be reduced. In this paper, we adopt non-uniform two-level grid index structure, which are designed to minimize update operations. We propose query scheduling technique using spatial relationship and time relationship and a combined spatio-temporal query processing method using time zone concepts to improve the throughput of query processing. Some experimental results are shown for range queries with different query range to show the performance tradeoffs of the proposed methods.

Deployment and Performance Analysis of Data Transfer Node Cluster for HPC Environment (HPC 환경을 위한 데이터 전송 노드 클러스터 구축 및 성능분석)

  • Hong, Wontaek;An, Dosik;Lee, Jaekook;Moon, Jeonghoon;Seok, Woojin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.9
    • /
    • pp.197-206
    • /
    • 2020
  • Collaborative research in science applications based on HPC service needs rapid transfers of massive data between research colleagues over wide area network. With regard to this requirement, researches on enhancing data transfer performance between major superfacilities in the U.S. have been conducted recently. In this paper, we deploy multiple data transfer nodes(DTNs) over high-speed science networks in order to move rapidly large amounts of data in the parallel filesystem of KISTI's Nurion supercomputer, and perform transfer experiments between endpoints with approximately 130ms round trip time. We have shown the results of transfer throughput in different size file sets and compared them. In addition, it has been confirmed that the DTN cluster with three nodes can provide about 1.8 and 2.7 times higher transfer throughput than a single node in two types of concurrency and parallelism settings.

TDM based MAC protocol for throughput enhancement in dense wireless LANs area (무선 랜 밀집 지역의 전송률 향상을 위한 시분할 매체 접근 제어 프로토콜)

  • Kwon, Hyeok-Jin;Hwang, Gyung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.534-541
    • /
    • 2018
  • The number of stations existing in the same wireless channel is increasing due to the spread of the wireless LAN devices. CSMA/CA, a conventional wireless LAN protocol, uses a random backoff method. In the random backoff scheme, collision between stations is frequent in a dense region where the number of stations existing in the same channel is several tens or more, and the performance of the performance degradation of such a protocol, the IEEE 802.11ah standard proposed a Restricted Access Window(RAW) wireless access method. RAW improves performance by limiting the number of concurrent access stations by dividing the stations into several groups. In this paper, we propose a method to improve the performance of channel connection by using new group creation, group removal and group relocation algorithm according to traffic change by improving existing RAW method.

Performance Analysis of a Dense Device to Device Network

  • Kim, Seung-Yeon;Lim, Chi-Hun;Cho, Choong-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.2967-2981
    • /
    • 2014
  • Device-to-Device (D2D) communication is a technology component for long-term evolution-advanced (LTE-A). In D2D communication, users in close proximity to each other can communicate directly without going through a base station; such direct communication can improve spectral efficiency. Although D2D communication brings improvement in spectral efficiency, it also causes interference to the cellular network as a result of spectrum sharing. In particularly, D2D communication can generate interference for each D2D pair when the common wireless medium in a co-located limited area is accessed. Even though the interference management for between the D2D pair and cellular networks has been proposed, the interference reducing methods have still not been fully studied for the D2D pairs. In this paper, we investigate the problem of D2D pair coexistence in which interference is considered between D2D pairs. Using a signal to interference model for a target D2D pair, we provide an analysis of the aggregated throughput of a dense D2D network. For a target D2D pair, we assume that the desired signal and interference signals obey multipath fading and shadow fading. Through analysis, we demonstrate the effect of cluster size such as the number of D2D pairs and the size of the considered area on the network performance. The analytical results are compared with computer simulations. Our work can be used for a rough guideline for controlling the system throughput in a dense D2D network environment.

Performance analysis of DSSS- and CSS-based physical layer for IoT transmission over LEO satellites

  • Jung, Sooyeob;Im, Gyeongrae;Jung, Dong-Hyun;Kim, Pansoo;Ryu, Joon Gyu;Kang, Joonhyuk
    • ETRI Journal
    • /
    • v.44 no.4
    • /
    • pp.543-559
    • /
    • 2022
  • To determine a suitable waveform for Internet of Things (IoT) transmission over low-Earth orbit (LEO) satellites, this paper reports the results of a performance comparison between chirp spread spectrum (CSS)-based LoRa and direct sequence spread spectrum (DSSS)-based Ingenu. The performance of both waveforms was measured in terms of the packet error rate, throughput, and packet loss rate, considering the Doppler effect caused by the high speed of LEO satellites and the interference among multiple terminals. Simulation results indicate that the DSSS scheme is more suitable than the CSS scheme for high-traffic IoT services because of its robustness against interference among multiple terminals. However, the CSS scheme is more suitable than the DSSS scheme for high-mobility IoT services because of its robustness against the Doppler effect. We discuss various solutions, such as the preprocessing of Doppler effect and avoidance of packet collision, to enhance the performance of the DSSS and CSS schemes. The simulation results of the proposed solution show that the enhanced DSSS scheme can be a proper waveform in IoT transmission over LEO satellites for both the high-traffic and high-mobility services.