Browse > Article
http://dx.doi.org/10.4218/etrij.2021-0038

Performance analysis of DSSS- and CSS-based physical layer for IoT transmission over LEO satellites  

Jung, Sooyeob (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Im, Gyeongrae (Satellite Wide-Area Infra Research Section, Electronics and Telecommunications Research Institute)
Jung, Dong-Hyun (Satellite Wide-Area Infra Research Section, Electronics and Telecommunications Research Institute)
Kim, Pansoo (Satellite Wide-Area Infra Research Section, Electronics and Telecommunications Research Institute)
Ryu, Joon Gyu (Satellite Wide-Area Infra Research Section, Electronics and Telecommunications Research Institute)
Kang, Joonhyuk (Department of Electrical Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
ETRI Journal / v.44, no.4, 2022 , pp. 543-559 More about this Journal
Abstract
To determine a suitable waveform for Internet of Things (IoT) transmission over low-Earth orbit (LEO) satellites, this paper reports the results of a performance comparison between chirp spread spectrum (CSS)-based LoRa and direct sequence spread spectrum (DSSS)-based Ingenu. The performance of both waveforms was measured in terms of the packet error rate, throughput, and packet loss rate, considering the Doppler effect caused by the high speed of LEO satellites and the interference among multiple terminals. Simulation results indicate that the DSSS scheme is more suitable than the CSS scheme for high-traffic IoT services because of its robustness against interference among multiple terminals. However, the CSS scheme is more suitable than the DSSS scheme for high-mobility IoT services because of its robustness against the Doppler effect. We discuss various solutions, such as the preprocessing of Doppler effect and avoidance of packet collision, to enhance the performance of the DSSS and CSS schemes. The simulation results of the proposed solution show that the enhanced DSSS scheme can be a proper waveform in IoT transmission over LEO satellites for both the high-traffic and high-mobility services.
Keywords
CSS; Doppler effect; DSSS; Ingenu; interference; IoT; LEO satellite; LoRa; unlicensed band;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. Ferre and A. Giremus, LoRa physical layer principle and performance analysis, in Proc. IEEE Int. Conf. Electron. Circuits Syst. (Bordeaux, France), Dec. 2018, pp. 65-68.
2 A. Kebo, I. Konstantinidis, J. J. Benedetto, M. R. Dellomo, and J. M. Sieracki, Ambiguity and sidelobe behavior of CAZAC coded waveforms, in Proc. IEEE Radar Conf. (Waltham, MA, USA), 2007. https://doi.org/10.1109/RADAR.2007.374198   DOI
3 H. Zhang, X. Chu, W. Guo, and S. Wang, Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum, IEEE Commun. Mag. 53 (2015), no. 3, 158-164.   DOI
4 3GPP TS 36.211 v.14.3.0, LTE: Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (Release 14), 2017.
5 Semtech, LoRa Modem Design Guide: SX1272/3/6/7/8/9, 2020, available at https://www.semtech.com/
6 Sigfox, Sigfox Technology, 2020. available at https://www.sigfox.com/
7 IEEE Standard, IEEE standard for local and metropolitan area networks-Part 15.4: Low-rate wireless personal area networks (LR-WPANs), Amendment 5: Physical layer specifications for low energy, critical infrastructure monitoring networks, 2013.
8 C. C. Chan, A. Al-Hourani, J. Choi, K. M. Gomez, and S. Kandeepan, Performance modeling framework for IoT-over-satellite using shared radio spectrum, MDPI Remote Sens 12 (2020), no. 10. https://doi.org/10.3390/rs12101666   DOI
9 3GPP TR 38.811 v.0.1.0, Study on new radio (NR) to support non-terrestrial networks (Release 15), 2017.
10 Y. S. Song, S. K. Lee, J. W. Lee, D. W. Kang, and K. W. Min, Analysis of adjacent channel interference using distribution function for V2X communication systems in the 5.9-GHz band for ITS, ETRI J. 41 (2019), no. 6, 703-714.   DOI
11 Ingenu, RPMA: Technology for the Internet of Things, 2015, available at https://www.ingenu.com
12 A. Ikpehai, B. Adebisi, K. M. Rabie, K. Anoh, R. E. Ande, M. Hammoudeh, H. Gacanin, and U. M. Mbanaso, Low-power wide area network technologies for internet-of-things: A comparative review, IEEE IoT J. 6 (2019), no. 2, 2225-2240.
13 A. Berni and W. Gregg, On the utility of chirp modulation for digital signaling, IEEE Trans. Commun. 21 (1973), no. 6, 748-751.   DOI
14 J. P. Queralta, T. N. Gia, Z. Zou, H. Tenhunen, and T. Westerlund, Comparative study of LPWAN technologies on unlicensed bands for M2M communication in the IoT: Beyond LoRa and LoRaWAN, in Proc. Int. Conf. Future Netw. Commun. (Halifax, Canada), Aug. 2019, pp. 343-350.
15 Y. Qian, L. Ma, and X. Liang, Symmetry chirp spread spectrum modulation used in LEO satellite Internet of Things, IEEE Commun. Lett. 22 (2018), no. 11, 2230-2233.   DOI
16 Y. Qian, L. Ma, and X. Liang, The performance of chirp signal used in LEO satellite Internet of Things, IEEE Commun. Lett. 23 (2019), no. 8, 1319-1322.   DOI
17 US7773664 B2, Random phase multiple access system with meshing, 2010.
18 3GPP TR 36.763 v1.0.0, 3GPP; technical specification group radio access network; study on narrow-band Internet of Things (NB-IoT) /enhanced machine type communication (eMTC) support for non-terrestrial networks (NTN) (Release 17), 2021.
19 Y. Roth, The physical layer for low power wide area networks: A study of combined modulation and coding associated with an iterative receiver, July 2017, available at HAL Id: tel-01568794. https://hal.archives-ouvertes.fr/tel-01568794v1
20 B. Tahir, S. Schwarz, and M. Rupp, BER comparison between convolutional, Turbo, LDPC, and polar codes, in Proc. IEEE Int. Conf. Telecommun. (Limassol, Cyprus), May 2017. https://doi.org/10.1109/ICT.2017.7998249   DOI
21 P. Kim, S. Jung, D. H. Jung, J. G. Ryu, and D. G. Oh, Performance analysis of direct sequence spread spectrum aloha for LEO satellite based IoT service, in Proc. IEEE Veh. Technol. Conf. (Honolulu, HI, USA), Sept. 2019, pp. 1-5.
22 A. O. Afisiadis, A. Burg, and A. Balatsoukas-Stimming, Coded LoRa frame error rate analysis, in Proc. IEEE Int. Conf. Commun. (Dublin, Ireland), June 2020, pp. 1-6.
23 Y. Tada and S. Kato, A star-topology sensor network system for agriculture using 802.15.4K standard, in Proc. IEEE Personal, Indoor Mobile Radio Commun. (London, UK), June 2013, pp. 76-80.
24 I. Ali, N. Al-Dhahir, and J. Hershey, Doppler characterization for LEO satellites, IEEE Trans. Commun. 46 (1998), no. 3, 309-313.   DOI
25 B. Vucetic and J. Du, Channel modeling and simulation in satellite mobile communication systems, IEEE J. Selected Areas Commun. 10 (1992), no. 8, 1209-1218.   DOI
26 B. Laporte-Fauret, M. A. Temim, G. Ferre, D. Dallet, B. Minger, and L. Fuche, An enhanced LoRa-Like receiver for the simultaneous reception of two interfering signals, in Proc. IEEE Personal, Indoor Mobile Radio Commun. (Istanbul, Turkey), Sept. 2019. https://doi.org/10.1109/PIMRC.2019.8904258   DOI
27 A. Fanfani, S. Morosi, L. Ronga, and E. Del Re, Frequency recovery techniques for TM/TC satellite modem in critical scenarios, Int. J Satell. Commun. Netw. 36 (2017), no. 36, 179-193.
28 L. M. Davis, I. B. Collings, and R. J. Evans, Estimation of LEO satellite channels, in Proc. IEEE Int. Conf. Inform., Commun. Sig. Process. (Singapore), Sept. 1997. https://doi.org/10.1109/ICICS.1997.647048   DOI
29 I. Stankovic, C. Ioana, and M. Dakovic, Sequence comparison in reconstruction and targeting in underwater sonar imaging, in Proc. IEEE OCEANS (Marseille, France), 2019. https://doi.org/10.1109/OCEANSE.2019.8867478   DOI
30 J. Bendetto and J. Donatelli, Ambiguity function and frametheoretic properties of periodic zero-autocorrelation waveforms, IEEE J. Sel. Top. Signal Process. 1 (2007), no. 1, 6-20.   DOI
31 T. Elshabrawy and J. Robert, Evaluation of the BER performance of LoRa communication using BICM decoding, in Proc. IEEE Int. Conf. Consumer Electron. (Berlin, Germany), Sept. 2019. https://doi.org/10.1109/ICCE-Berlin47944.2019.8966172   DOI