In this study, the annual power production of a wind farm according to obstacles and wind data was predicted for the Garyeok-do wind farm in the Saemangeum area. The Saemangeum Garyeok-do wind farm was built in December 2014 by the Korea Rural Community Corporation. Currently, two 1.5 MW wind turbines manufactured by Hyundai Heavy Industries are installed and operated. Automatic weather station data from 2015 to 2017 was used as wind data to predict the annual power production of the wind farm for three consecutive years. For prediction, a commercial computational fluid dynamics tool known to be suitable for wind energy prediction in complex terrain was used. Predictions were made for three cases with or without considering obstacles and wind direction errors. The study found that by considering both obstacles and wind direction errors, prediction errors could be substantially reduced. The prediction errors were within 2.5 % or less for all three years.
Prediction of total sediment load is essential in an extensive range of problems such as the design of the dead volume of dams, design of stable channels, sediment transport in the rivers, calculation of bridge piers degradation, prediction of sand and gravel mining effects on river-bed equilibrium, determination of the environmental impacts and dredging necessities. This paper is aimed to investigate and predict the total sediment load of the Wadi Arbaat in Eastern Sudan. The study was estimated the sediment load by separate total sediment load into bedload and Suspended Load (SL), independently. Although the sediment records are not sufficient to construct the discharge-sediment yield relationship and Sediment Rating Curve (SRC), the total sediment loads were predicted based on the discharge and Suspended Sediment Concentration (SSC). The turbidity data NTU in water quality has been used for prediction of the SSC in the estimation of suspended Sediment Yield (SY) transport of Wadi Arbaat. The sediment curves can be used for the estimation of the suspended SYs from the watershed area. The amount of information available for Khor Arbaat case study on sediment is poor data. However, the total sediment load is essential for the optimal control of the sediment transport on Khor Arbaat sediment and the protection of the dams on the upper gate area. The results show that the proposed model is found to be considered adequate to predict the total sediment load.
Given that most of the link prediction algorithms for signed social networks can only complete sign prediction, a novel algorithm is proposed aiming to achieve both link prediction and sign prediction in signed networks. Based on the structural balance theory, the local link tightness and global link tightness are defined respectively by using the structural information of paths with the step size of 2 and 3 between the two nodes. Then the total similarity of the node pair can be obtained by combining them. Its absolute value measures the possibility of the two nodes to establish a link, and its sign is the sign prediction result of the predicted link. The effectiveness and correctness of the proposed algorithm are verified on six typical datasets. Comparison and analysis are also carried out with the classical prediction algorithms in signed networks such as CN-Predict, ICN-Predict, and PSNBS (prediction in signed networks based on balance and similarity) using the evaluation indexes like area under the curve (AUC), Precision, improved AUC', improved Accuracy', and so on. Results show that the proposed algorithm achieves good performance in both link prediction and sign prediction, and its accuracy is higher than other algorithms. Moreover, it can achieve a good balance between prediction accuracy and computational complexity.
Prolonged in-plant personnel exposure to high noise levels results in permant hearing damage. There are no way to correct this hearing damage by treatment or use of hearing aids. Therefore, every employer is responsible for providing a workplace free of such hazards as excessive noise. This study was carried out to evalute and predict a given noise environment based on specific limit as the noise guarantee for a newly-founded petrochemical plant. The maximum total sound level should not exceed 85dBA in the work area, except where the area is defined as a restricted area and 70dBA at the plant boundary. Prediction of the noise levels within the plant area for a newly-founded petrochemical plant was achieved by dividing all plant area into 20m$\times$20m regular grid spaces and noise level inside the area or unit that in-plant personel exposure to high noise levels was estimated computed into 5m$\times$5m regular grid spaces. The noise level at the grid point that was propagated from each of the noise sources(equipments) computed using the methematical formula was defined as follows : $SPL_2$=$SPL_1-20log{\frac{r_2}{r_1}}$(dB) where $SPL_1$ =sound pressure level at distance $r_1$ from the source $SPL_2$=sound pressure level at distance $r_2$ from the source As a result, the equipments exceeded noise limit or irritaring noise levels were identified on the specific grid coordinates. As for equipments in the area that show high noise levels, appropriate counter-measures for noise control (by barriers, enclosure, silencers, or the change of equipments, for example) should be reviewed. Methods for identifying sources of noise applied in this study should be the model for prediction of the noise levels for any newly-founded plant.
Almost all small area estimations are obtained by minimizing the mean squared error. Recently relative error prediction methods have been developed and adapted to small area estimation. Usually the estimators obtained by using relative error prediction is called a shrinkage estimator. Especially when data set consists of large range values, the shrinkage estimator is known as having good statistical properties and an easy interpretation. In this paper we study the shrinkage estimators based on logistic regression type estimators for small area estimation. Some simulation studies are performed and the Economically Active Population Survey data of 2005 is used for comparison.
In this study, a method is proposed for the cutting force prediction of Ball-end milling process using Z-map is proposed. Any types of cutting area generated from previous cutting process can be expressed in z-map data. Cutting edge of a ball-end mill is divided into a set of finite cutting edges and the position of this edge is projected to the cross-section plane normal to the Z-axis. Comparing this projected position with Z-map data of cutting area and determining whether it is in the cutting region, total cutting force can be calculated by means of numerical integration. A series of experiments such as side cutting and upward/downard cutting was performet to verify the simulated cutting force.
This study assesses the dispersion and emission rates of odor form industrial area source. CALPUFF and AERMOD Gaussian models were used for predicting downwind odor concentration and calculating odor emission rates. The studied region was Seobu industrial complex in Korea. Odor samples were collected five days over a year period in 2006. In-site meteorological data (wind direction and wind speed) were used to predict concentration. The BOOT statistical examination software was used to analyze the data. Comparison between the predicted and field sampled downwind concentration using BOOT analysis indicates that the CALPUFF model prediction is a little better than AERMOD prediction for average downwind odor concentrations. Predicted concentrations of AERMOD model have a little larger scatter than that of CALPUFF model. The results also show odor emission rates of Seobu industrial complex area were an order of 10 smaller than that of beef cattle feed lots.
New methodology is proposed to predict the hourly cooling load of the next day using maximum/minimum temperature and building area. The maximum and minimum temperature are obtained from forecasted weather data. The cooling load parameters related to building area are set through a database provided from reference buildings. To validate the performance of the proposed method, the predicted cooling loads in hourly bases are calculated and compared with the measured data. The predicted results show fairly good agreement with the measured data for benchmarking building.
본 연구는 호우경보에 사용되는 Limited area ENsemble prediction System (LENS) 강우예측자료에 대한 공간적 특성 및 적용성을 평가하였다. LENS는 13개의 강우앙상블 멤버를 가지고 있어 호우경보를 발령하는데 있어 확률적인 방법을 활용할 수 있다. 그러나 LENS의 자료의 접근성은 매우 낮아 강우예측자료의 적용성에 대한 연구가 미흡한 실정이다. 본 연구에서는 행정구역별로 활용되는 호우경보 시스템에 따라 하나의 지점값과 면적평균값을 관측값과 비교하여 평가지수를 산정하였다. 또한, LENS의 발령시간에 따르는 각 앙상블 멤버들의 정확성을 평가하였다. LENS는 멤버별로 과대 혹은 과소 예측의 불확실성을 보여줬다. 면적단위의 예측이 지점단위의 예측보다 더 높은 예측성을 보여주었다. 또한, 다가오는 72시간의 강우를 예측하는 LENS 자료는 수재해의 영향성이 있을 수 있는 강우 사상에 대하여 예측성능이 좋은 것으로 평가되었다. 추후 국지강우앙상블시스템(LENS) 자료는 행정구역 또는 유역면적 단위의 홍수 대비에 기초자료로 활용될 수 있을 것으로 기대된다.
경상북도 23개 시․군 산사태 발생지 172개소를 대상지로 선정하여 산사태 발생 특성을 다양한 요인별로 조사 분석하여 산사태 발생 위험 예측을 위한 판정기준표를 작성하였다. 산사태 위험 판정기준표는 수량화 I류를 이용하여 분석하였으며, 산사태 발생량에 영향을 많이 주는 요인은 경사위치, 경사길이, 모암, 방위, 임분경급, 종단명형, 경사도의 순으로 나타났다. 산사태 발생 위험 예측을 위한 산사태 붕괴 위험도 판정기준표를 작성한 결과, 107점 미만 : 안정(IV등급), 107~176점 : 위험도 소(III등급), 177~246점 : 위험도 중(II등급), 247점 이상 : 위험도 대(I등급)로 붕괴 위험도가 구분되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.