• Title/Summary/Keyword: Arduino-based Design

Search Result 111, Processing Time 0.024 seconds

Education Method for Programming through Physical Computing based on Analog Signaling of Arduino (아두이노 아날로그 신호 기반 피지컬 컴퓨팅을 통한 프로그래밍 교육 방법)

  • Hur, Kyeong;Sohn, Won-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1481-1490
    • /
    • 2019
  • Arduino makes it easy to connect objects and computers. As a result, programming learning using physical computing has been proposed as an effective alternative to SW training for beginners. In this paper, we propose an Arduino-based physical computing education method that can be applied to basic programming subjects. To this end, we propose a basic programming training method based on Arduino analog signals. Currently, physical computing courses focus on digital control when connecting input sensors and output devices in Arduino. However, the contents of programming education using analog signals of Arduino boards are insufficient. In this paper, we proposed and tested the teaching method used for programming education using low-cost materials used for Arduino analog signal-based computing.

A Study on the Development of LED Stage Costume Design Using Arduino LilyPad and Sound Sensor (아두이노 릴리패드와 사운드 센서를 이용한 LED 무대의상 디자인 개발 연구)

  • Na, Yoonhee;Tang, Chunxiao;Han, Rui;Kim, Sookjin
    • Journal of Fashion Business
    • /
    • v.25 no.1
    • /
    • pp.133-149
    • /
    • 2021
  • This study presents a new fashion wearable product, a classical music stage costume design, using an Arduino LilyPad that can control light-emitting diodes(LEDs) and a sound sensor that can set an environmental range of LED light. As a theoretical background, LED fashion design research and stage costume design research status were reviewed, and Arduino LilyPads, sensors, LEDs, and batteries required for LED stage costume production were investigated. Based on prior research, the LED stage costume design for the soprano stage was presented in a three-step process of design planning, development, and production, and an actual prototype was produced. This process produced meaningful information and materials for making clothes with the added function of a wearable computer. In particular, fashion designers or fashion majors can easily access the Arduino LillyPad and use not only LEDs, but other light emitting materials. It is expected that it will be used as a basic material for the use of the Arduino LillyPad that can develop new creations that have been utilized.

Arduino Based Smart Home System for the Elderly Living Alone (아두이노 기반의 독거노인을 위한 스마트홈 시스템)

  • Lee, In-Gu;Cho, Myeon-Gyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.307-315
    • /
    • 2015
  • Recently, Smart Home System(SHS) is applied in order to provide comfort, energy efficient and better security to the residence. Thus, by introducing the SHS in the house of elderly people, it is possible to provide a convenient and safe life for old people especially living alone. This paper presents the design and implementation of a low cost but yet flexible and secure smart-phone based SHS. The design is based on inter-working between Arduino board with Bluetooth and Arduino board with Ethernet shield, and the home monitor/appliances are connected to the input/output ports of this board via sensors/relays. In addition, when the old man is put on an emergency, the proposed system will automatically notify it the family. Therefore, we have implemented an inexpensive and efficient SHS for the elderly living alone by inter-working smart phones, internet server and Arduino micro-controller.

Consideration of Don't-care Condition for Multiplexer-based Logic Design (For Application to Arduino-based Design Education) (다중화기 기반 논리 설계를 위한 무정의 조건의 고찰 (아두이노 설계 교육에의 활용을 위한))

  • Lee, Jae Min
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.881-888
    • /
    • 2017
  • Logic design using multiplexer has been used as a useful method for design convenience and flexibility in structural digital system design. In this paper, we analyze the effect of don't care conditions on logic optimization in a multiplexer-based logic design, which was not discussed enough in the previous studies in multiplexer based logic design, and describe the use of don't care conditions for designing of a single multiplexer and multiple multiplexer-based logic design. Especially, the design method when the number of data input is not 2m (as the number of selection lines is m) is considered. We also describe how to apply the proposed technique to the digital logic design education in conjunction with microprocessor design using Arduino which is widely used in creative engineering education recently.

Arduino hardware and Android ADK software combination (아두이노 하드웨어와 안드로이드 ADK 소프트웨어의 결합)

  • Lee, Sung-jin;Choi, Chul-kil;Lee, Kyung-mu;Choi, Byeong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.336-339
    • /
    • 2013
  • Arduino is for design based on open source prototyping platform, artist, designer, hobby activists, etc, i has been designed for all those who are interested in the environment construct. Arduino adventage you can easily create applications hardware, without deep knowledge about the hardware. Configuration of arduino using AVR microcontroller ATmage 168, software to action arduino using arduino program, MATLAB, Processing. Arduino is open source base, you can hardware production directly and using shield additionally, the arduino can be combined. Android AKD is open source. You can create android smart phone application. By the way compatible and can be used android ADK add arduino Manifast. Using arduino program, arduino bread-board design on hardware., create button click, connection with each other. In this paper, sortware was used for arduino program and android ADK, hardware was used for arduino MegaADK board, After making one accessory using the software and hardware verification.

  • PDF

Arduino Learning Content using Blender and Unity Engine (블렌더와 유니티 엔진을 이용한 아두이노 학습 콘텐츠 설계)

  • Lee, Min-Hye;Park, Hyuk-Gyu;Won, Dong-Hyun;Kang, Sun-kyung;Shin, Sung-yoon;Kang, Yun-Jeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.386-388
    • /
    • 2022
  • Recently, realistic contents using virtual reality and augmented reality are attracting attention as learning aids. 3D-based contents have the advantage of being able to observe and experience objects from various angles than 2D-based contents shown on a flat surface. In this paper, we propose a content design based on 3D model for Arduino learning in a virtual environment. The Arduino board and sensor were implemented using Blender, and a 3D-based simulator environment was constructed using the Unity engine. The proposed content uses the Arduino board and sensor implemented in 3D so that learners can easily experience the working principle of Arduino and the coding process.

  • PDF

Design and Implementation of Physical Computing Education Content based on Augmented Reality

  • Kim, So-Young;Jung, Eunmi;Kim, Heesun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.198-205
    • /
    • 2022
  • Along with a variety of coding education, physical computing education for controlling various sensors is being actively conducted for elementary, middle, and high school students in line with the era of the fourth industrial revolution. A problem with physical computing education using Arduino is pin connection errors between Arduino and various sensors. Most of the students who come into contact with the Arduino for the first time often do not know the purpose of the Arduino pin and the connection position of the pin. Also, hardware built with incorrect pin connections to the Arduino board often does not work properly. If this case continues, students will lose interest in coding education. Therefore, in this paper, we implemented an augmented reality application that informs the connection process of the Arduino board and the sensor during physical computing coding education using Arduino, and designed and implemented educational content for the Arduino pin position and connection process. First, we explain the role of the Arduino board and the sensor and the location of the pins. After that, the students run the educational augmented reality educational content using their smartphones and check the correct pin connection process between the Arduino and the sensor. In the physical computing education, augmented reality content is used to increase the understanding and immersion of the class. It is expected that the educational effect will also increase by inducing fun and interest in physical computing coding education.

An image analysis system Design using Arduino sensor and feature point extraction algorithm to prevent intrusion

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.23-28
    • /
    • 2021
  • In this paper, we studied a system that can efficiently build security management for single-person households using Arduino, ESP32-CAM and PIR sensors, and proposed an Android app with an internet connection. The ESP32-CAM is an Arduino compatible board that supports both Wi-Fi, Bluetooth, and cameras using an ESP32-based processor. The PCB on-board antenna may be used independently, and the sensitivity may be expanded by separately connecting the external antenna. This system has implemented an Arduino-based Unauthorized intrusion system that can significantly help prevent crimes in single-person households using the combination of PIR sensors, Arduino devices, and smartphones. unauthorized intrusion system, showing the connection between Arduino Uno and ESP32-CAM and with smartphone applications. Recently, if daily quarantine is underway around us and it is necessary to verify the identity of visitors, it is expected that it will help maintain a safety net if this system is applied for the purpose of facial recognition and restricting some access. This technology is widely used to verify that the characters in the two images entered into the system are the same or to determine who the characters in the images are most similar to among those previously stored in the internal database. There is an advantage that it may be implemented in a low-power, low-cost environment through image recognition, comparison, feature point extraction, and comparison.

A Design and Implementation of Control Application for Arduino Prime Smart Car

  • Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.59-64
    • /
    • 2016
  • In this paper, we design and implement an Application based on android platform, which can control arduino Prime Smart Car using Bluetooth communication. This Application consist of Bluetooth communication module, manual mode module, and line-tracer mode module. In the Bluetooth communication module, it checks the on/off status of Smartphone Bluetooth. If Bluetooth status is off, it activates Bluetooth, selects the corresponding device from Bluetooth device list, and connects with a pair. In order to reduce coding time, we implements Bluetooth communication using inherited class from android Bluetooth package. In the manual mode module, it implements six direction moving button and stop button, which can control arduino Prime Smart Car. In the line-tracer mode module, it implements Prime Smart Car with self-driving function using TCRT5000 sensor. And moving button and stop button is disabled.

Design of Electronic Drum Using Computer Communication Based on Arduino (아두이노에 기반한 컴퓨터 통신을 이용한 전자드럼 설계)

  • Kim, Seungmin;Yang, Jisoo;Lee, Seungjae;Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.489-491
    • /
    • 2013
  • In this paper, Electronic Drum based on Arduino and Processing language to communicate with a computer is implemented. First, we made a drum pad by using piezoelectric sensors. The drum pads prevent damage to the sensor and new mechanism was fabricated to mitigate the impact structure. Arduino connected to the pad, the sensor detects a signal when the shock sends it to Arduino. The received signal of Arduino sends a signal to the computer, and the signal received is stored in the computer to output sound of the drum. Through this structure, the micro-controller, the computer and communications technology can be combined and applicable to a many system.

  • PDF