• 제목/요약/키워드: Arcuate Nucleus

검색결과 24건 처리시간 0.027초

Network of hypothalamic neurons that control appetite

  • Sohn, Jong-Woo
    • BMB Reports
    • /
    • 제48권4호
    • /
    • pp.229-233
    • /
    • 2015
  • The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS. [BMB Reports 2015; 48(4): 229-233]

백서의 위와 족삼리에서 스트레스 관련(CRF, CRF-R, CRF-BP) 신경전달물질의 발현에 대한 연구 (Expression of neurotransmitter(CRF, CRF-R and CRF-BP) related to stress in stomach and zusanli in rats)

  • 이창현;김영호;송범용;육태한
    • Journal of Acupuncture Research
    • /
    • 제20권6호
    • /
    • pp.89-102
    • /
    • 2003
  • Objective: The expression of CRF(corticotropin releasing factor), CRF-R(receptor) and CRF-BP(binding protein) in CNS neurons projecting to the stomach and ST36 using the pseudorabies virus in the rat was investigated. Methods: After survival times of 5 days following injection of PRV-Ba-Gal, The thirty rats were perfused, and their brain were frozen sectioned($30{\mu}m$). These sections were stained by PRV-Ba-Gal histochemical staining method and(or) CRF, CRF-R and CRF-BP immunohistochemical method. The common expressed areas of the brain projecting to the stomach and zusanli(ST36) following injection of PRV-Ba-Gal were observed with light microscope. Results: 1) The dense accumulation of CRF-immunoreactive terminals is seen in the area postrema, n. tractus solitarius, external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. 2) Aggregates of CRF-R immunoreactive perikarya are found in area postrema, n. tractus solitarius, lateral reticular n., gigantocellular reticular n., locus coeruleues, paraventricular n. of hypothalamus, median eminence, preoptic n., arcuate n. and hind limb area of cerebral cortex. 3) Aggregates of CRF-BP immunoreactive perikarya are found in area postrema, n. tractus solitarius, lateral reticular nucleus, gigantocellular reticular n., locus coeruleues, paraventricular n. of hypothalamus, median eminence and arcuate n.. Conclusions : These results suggest that PRV-Ba-Gal labeled areas projecting to stomach and ST36 may be related to the central autonomic pathways. A part of CNS neurons projecting to the stomach and ST36 were related to expression of CRF, CRF-R and CRF-BP related to the stress in central autonomic center.

  • PDF

Neuroendocrine Control of Gonadotropin Secretion during the Menstrual Cycle

  • Ryu, Kyung-Za
    • 대한약리학회지
    • /
    • 제23권2호
    • /
    • pp.57-75
    • /
    • 1987
  • Two modalities of gonadotropin secretion, pulsatile gonadotropin and preovulatory gonadotropin surge, have been identified in the mammals. Pulsatile gonadotropin secretion is modulated by the pulsatile pattern of GnRH release and complex ovarian steroid feedback actions. The neural mechansim that regulates the pulsatile release of GnRH in the hypothalamus is called "GnRH pulse generator". Ovarian steroids, estradiol and progesterone, appear to exert thier feedback effects both directly on the pituitary to modulate gonadotropin release and on a hypothalamic site to modulate GnRH release; estradiol primarily affects the amplitude while progesterone decreases the frequency of the pulsatile GnRH. Steroid hormones are known to affect catecholamine transmission in brain. MBH-POA is richly innervated by NE systems and close apposition of NE terminals and GnRH cell bodies occurs in the MBH as well as in the POA. NE normally facilitates pulsatile LH release by acting through ${\alpha}-receptor$ mechanism. However, precise nature of facilitative role of NE transmission in maintaining pulsatile LH has not been clearly understood. Close apposition of DA and GnRH terminals in ME might permit DA to influence GnRH release. Action of DA transmission probably is mediated by axo-axonic contacts between GnRH and DA fibers in the ME. Dopamine transmission does not normally regulate pulsatile LH release, but under certain conditions, increased DA transmission inhibit LH pulse. Endogenous opioid acts to suppress the secretion of GnRH into hypophysial portal circulation, thereby inhibiting gonadotropin secretion. However, an interaction between endogenenous opioid peptides and gonadotropin release is a complex one which involves ovarian hormones as well. LH secretion appears to be most suppressed by endogenenous opioids during the luteal phase, at a time of elevated progesterone secretion. The arcuate nucleus contains not only cell bodies for GnRH and ${\beta}-endorphin$ but also a dense aborization of fibers suggesting that GnRH release is changed by the interactions between GnRH and ${\beta}-endorphin$ cell bodies within the arcuate nucleus. The frequency and amplitude of pulsatile LH release seem to be increased during the preovulatory gonadotropin surge. Estradiol exerts positive feedback action on the hypothalamo-pituitary axis to trigger preovulatory LH surge. GnRH is also crucial hormonal stimulus for preovulatory LH surge. It is unlikely, however, that increased secretion of GnRH during the preovulatory gonadotropin surge represents an obligatory neural signal for generation of the LH discharge in primates including human. Modulation of preovulatory LH surge by catecholamines has been studied almost exclusively in rats. NE and E may be involved in distinct way to accumulate GnRH in the MBH and its release into the hypophysial portal system during the critical period for LH surge on proestrus in rats. However, the mechanisms whereby augmented adrenergic transmission may facilitate the formation and accumulation of GnRH in the ME-ARC nerve terminals before the LH surge have not been clearly understood.

  • PDF

Do Opioid Receptors Play a Role in Blood Pressure Regulation?

  • Rhee, H.M.;Holaday, J.W.;Long, J.B.;Gaumann, M.D.;Yaksh, T.L.;Tyce, G.M.;Dixon, W.R.;Chang, A.P.;Mastrianni, J.A.;Mosqueda-Garcia, R.;Kunos, G.
    • 대한약리학회지
    • /
    • 제24권2호
    • /
    • pp.153-164
    • /
    • 1988
  • The potential role of endogenous opioid peptides (EOPS) in cardiovascular regulation has only recently been entertained. EOPS have been localized in brain, spinal cord, autonomic ganglia, particularly the adrenal gland, and many other peripheral tissues. There are at least five major types of opioid receptors; namely ${\mu},\;{\delta},\;k,\;{\sigma},\;and\;{\varepsilon}$ and Experimental evidence indicates that cardiovascular actions of the peptide are mediated primarily by ${\mu},\;{\delta}$ and k receptors, and that these receptor types may be allosterically coupled. In anesthetized rabbits met-enkephalin decreased blood pressure and heart rate, which closely paralleled a reduction in sympathetic discharge. Naloxone, but not naloxone methobromide, antagonized these effects, which suggests a central site of action of met-enkephalin. A number of autonomic agents, particularly adrenergic ${\alpha}$-and, ${\beta}-agonists$ and antagonists modify the cardiovascular actions of met-enkephalin. Experiments in reserpine-treated and adrenalectomized rats provide no evidence of sympathetic nervous system involvement in the pressor responses to intravenous injection of opioid peptides, but rather suggest a direct peripheral action. Finally, activation of a beta-endorphinergic pathway projecting from the arcuate nucleus to the nucleus tractos solitarii in rats can cause naloxone reversible hypotension and bradycardia. There is evidence to implicate this pathway in antihypertensive drug action and in the modulation of baroreflex activity.

  • PDF

Relationships of Cocaine and Amphetamine Regulated Transcript with Serotonin in the Brain

  • Park, S. H.;B. S. Kwon;J. R. Chun;J. W. Jahng;Lee, H. T.;K. S. Chung
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.51-51
    • /
    • 2001
  • Cocaine and amphetamine-regulated transcript (CART) is a satiety factor that is regulated by leptin. It was reported that the mice intracerebroventricularly injected with CART showed behavioral changes resembled with the typical behavioral alterations found in the mice carrying disorders in the brain serotonergic (5-HT) system. Hence, this study was conducted to find out the relationships between CART and 5-HT. We first examined the mRNA levels of CART after the injections of para-chlorophenylalanine (pCPA, 300 mg/kg i.p., single injection or daily for three consecutive days) in the rat brains by in situ hybridization using the mouse CART cDNA probe cloned in our laboratory. Systemic administrations of pCPA, a potent inhibitor of tryptophan hydroxylase, the rate limiting enzyme of 5-HT biosynthesis, acutely depletes the brain 5-HT transporter (5-HTT) in the dorsal raphe nucleus (DRN), which reuptakes terminal 5-HT. Results indicated that the mRNA level of CART significantly decreased in the arcuate nucleus, paraventricular nucleus, and lateral hypothalamic nucleus by three days of daily injection with pCPA with no noticeable change detected 24 hrs after the single injection. The message levels of 5-HTT in DRN decreased in both single and three days of injections. Secondly, to investigate whether CART affect to 5-HT, mouse genomic CART gene, which is consist of 3 exons and 2 introns and mouse neurofilament light (NF-L) chain promoter were cloned. Then, we constructed neuron specific expression vector, which was transfected into HeLa cell using lipid-mediated transfection system. Expression of GFP and CART linked to NF-L-chain promoter in the transfected HeLa cell were detected by using fluorescent microscope and RT-PCR. These results confirmed normal expression of DNA constructs in vitro. Then, to increase brain specific expression of CART in vivo transgenic mice carrying CART gene controlled the deleted NF-L-chain promoter were generated by the DNA microinjection into pronuclei of fertilized embryos. Transgenic mice were detected by Southern blot. Further study is necessary to examine CART expression and 5-HTT in these transgenic mice. Therefore, these results suggest that there maybe a positive molecular correlation between CART and 5-HT in responding to the stimuli.

  • PDF

The Inhibitory Effect of Baicalin on the Short-Term Food Intake in C57BL/6J Mice

  • Kim, Eun-Ho;Son, Rak-Ho;Myoung, Hyeon-Jong;Mar, Woong-Chon;Kim, Won-Ki;Nam, Kung-Woo
    • Biomolecules & Therapeutics
    • /
    • 제18권2호
    • /
    • pp.171-177
    • /
    • 2010
  • Appetite is inhibited by the anorexigenic neuropeptides POMC (proopiomelanocortin) and CART (cocaine-amphetamine-regulated transcript) in the hypothalamus. The present study was performed to examine the inhibitory effects of baicalin against food intake and the upregulation of POMC/CART. Short-term food intake (48 h) was significantly inhibited by treatment with baicalin (10 mg/kg, p<0.05) in C57BL/6 mice. Immunohistochemical analysis showed that baicalin upregulated POMC and CART levels in the arcuate nucleus of the hypothalamus. These effects were also examined using an in vitro system. pPOMC-Luc or pCART-Luc plasmids were transformed into mouse N29-2 neuronal and human SH-SY5Y cells, and the activities of baicalin were examined in these cells. Baicalin increased POMC and CART promoter-driven luciferase activity in a dose-dependent manner without cytotoxic effects. These results suggest that baicalin downregulates short-term food intake while upregulating POMC and CART expression.

Cellular Contributors to Hypothalamic Inflammation in Obesity

  • Lee, Chan Hee;Suk, Kyoungho;Yu, Rina;Kim, Min-Seon
    • Molecules and Cells
    • /
    • 제43권5호
    • /
    • pp.431-437
    • /
    • 2020
  • The hypothalamus is a crucial organ for the maintenance of appropriate body fat storage. Neurons in the hypothalamic arcuate nucleus (ARH) detect energy shortage or surplus via the circulating concentrations of metabolic hormones and nutrients, and then coordinate energy intake and expenditure to maintain energy homeostasis. Malfunction or loss of hypothalamic ARH neurons results in obesity. Accumulated evidence suggests that hypothalamic inflammation is a key pathological mechanism that links chronic overconsumption of a high-fat diet (HFD) with the development of obesity and related metabolic complications. Interestingly, overnutrition-induced hypothalamic inflammation occurs specifically in the ARH, where microglia initiate an inflammatory response by releasing proinflammatory cytokines and chemokines in response to excessive fatty acid flux. Upon more prolonged HFD consumption, astrocytes and perivascular macrophages become involved and sustain hypothalamic inflammation. ARH neurons are victims of hypothalamic inflammation, but they may actively participate in hypothalamic inflammation by sending quiescence or stress signals to surrounding glia. In this mini-review, we describe the current state of knowledge regarding the contributions of neurons and glia, and their interactions, to HFD-induced hypothalamic inflammation.

Pseudorabies virus를 이용한 췌장과 삼음교(三陰交)(Sp6), 음릉천(陰陵泉)(Sp9)에서 투사되는 중추 신경로에 관한 형태학적 연구 (Morphological Studies of the Central Neural Pathways to the Pancreas, Sanyinjiao(Sp6) and Yinlingquan(Sp9) using Pseudorabies Virus)

  • 김철한;이수경;염승룡;권영달;송용선
    • 한방재활의학과학회지
    • /
    • 제19권1호
    • /
    • pp.23-38
    • /
    • 2009
  • Objectives : The purpose of this morphological studies was to investigate the relations between Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas of rats using peudorabies virus(PRV). Methods : We observed labeled neurons following the injection of PRV, Bartha strain, into the Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas of rats. After survival times of 4 days following the injection of PRV, the rats were perfused, and their spinal ganglia, spinal cord and brain stem were frozen sectioned($35{\mu}m$). These sections were strained by PRV immunohistchemical staining methods and observed with light microscope. Results : The results were as follows. 1. In the spinal ganglia, the overlap areas of PRV labeled neurons projecting to Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas were observed in T10-13 dorsal root ganglia. 2. In the spinal cord, the overlap areas of PRV labeled neurons projecting to Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas were lamina I, IV, V, VII, IX, X, intermediolateral nucleus(IML), intermediomedial nucleus(IMM) in thoracic segments. In lumbar segments, the overlap areas of PRV labeled neuron were lamina I, IV, V, VI, IX, X and IMM. In sacral segments, the overlap areas of PRV labeled neuron were lamina I, IV, V, VI, VII, IX, X. 3. In the brain, the overlap areas of PRV labeled neurons projecting to Sanyinjiao(Sp6), Yinlingquan(Sp9) and pancreas were area postrema, nucleus tractus solitarius, caudoventrolateral reticular nu., medullary reticular nu., lateral paragigantocellular nu., C3 adrenalin cells, gigantocellular nu., raphe pallidus nu., raphe obscurus nu., ambiguus nu., raphe magnus nu., pontine reticular formation, A5 cell group, subcoeruleus nu., locus coeruleus, Barringnton's nu., $K{\ddot{o}}lliker$-Fuse nu., dorsal raphe nu., Edinger-Westphal nu., central gray matter, perifornical nu., dorsomedial hypothalamic nu., arcuate nu., lateral hypothalamic nu., paraventricular hypothalamic nu., hindlimb area. Conclusions : In conclusion, these results suggest that the interrelationship of meridian(spleen meridian), acupoints(Sp6 and Sp9) and viscera(pancreas) may be related the central autonomic centers.

The Effect of Ghrelin on $Ca^{2+}$ Concentration in Thyroid FRTL-5 Cells

  • Kim, Byung-Joo;Park, Young-Joo;Park, Do-Joon;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제8권4호
    • /
    • pp.195-200
    • /
    • 2004
  • Ghrelin is a newly discovered peptide, which is released from the stomach and neurons in the hypothalamic arcuate nucleus (ARC), and potently stimulates growth hormone release and food intake. In the present study, we investigated the effect of ghrelin on $[Ca^{2+}]_i$ in thyroid FRTL-5 cells. Ghrelin (5 nM) increased $[Ca^{2+}]_i$ and TSH (1 unit/l) had an additive effect on $[Ca^{2+}]_i$ when extracellular normal solution was 1.1mM $Ca^{2+}$ containing Coon's modified Ham's F12 medium. When $Ca^{2+}-free$ medium containing 2 mM EGTA replaced the above normal solution, ghrelin also induced a similar rise in $[Ca^{2+}]_i$. In the middle of $[Ca^{2+}]_i$ increment by ghrelin, nifedipine $(1\;{\mu}M)$, nickel $(100\;{\mu}M)$ and $La^{3+}\;(100\;{\mu}M)$ had no effect on $[Ca^{2+}]_i$. After endoplasmic reticulum was depleted by cyclopiazonic acid $(CPA;10\;{\mu}M)$, ghrelin caused no visible change on $[Ca^{2+}]_i$ in $Ca^{2+}-free$/2 mM EGTA solution. These results suggest that ghrelin can increase $[Ca^{2+}]_i$ through endoplasmic reticulum in thyroid FRTL-5 cells.

Role of Neuropeptide Y and Proopiomelanocortin in Fluoxetine- Induced Anorexia

  • Myung Chang-Seon;Kim Bom-Taeck;Choi Si Ho;Song Gyu Yong;Lee Seok Yong;Jahng Jeong Won
    • Archives of Pharmacal Research
    • /
    • 제28권6호
    • /
    • pp.716-721
    • /
    • 2005
  • Fluoxetine is an anorexic agent known to reduce food intake and weight gain. However, the molecular mechanism by which fluoxetine induces anorexia has not been well-established. We examined mRNA expression levels of neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the brain regions of rats using RT-PCR and in situ hybridization techniques after 2 weeks of administering fluoxetine daily. Fluoxetine persistently suppressed food intake and weight gain during the experimental period. The pair-fed group confirmed that the reduction in body weight in the fluoxetine treated rats resulted primarily from decreased food intake. RT-PCR analyses showed that mRNA expression levels of both NPY and POMC were markedly reduced by fluoxetine treatment in all parts of the brain examined, including the hypothalamus. POMC mRNA in situ signals were significantly decreased, NPY levels tended to increase in the arcuate nucleus (ARC) of fluoxetine treated rats (compared to the vehicle controls). In the pair-fed group, NPY mRNA levels did not change, but the POMC levels decreased (compared with the vehicle controls). These results reveal that the chronic administration of fluoxetine decreases expression levels in both NPY and POMC in the brain, and suggests that fluoxetine-induced anorexia may not be mediated by changes in the ARC expression of either NPY or POMC. It is possible that a fluoxetine raised level of 5-HT play an inhibitory role in the orectic action caused by a reduced expression of ARC POMC ($\alpha$-MSH).