Browse > Article
http://dx.doi.org/10.14348/molcells.2020.0055

Cellular Contributors to Hypothalamic Inflammation in Obesity  

Lee, Chan Hee (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine)
Suk, Kyoungho (Department of Pharmacology, School of Medicine, Kyungpook National University College of Medicine)
Yu, Rina (Department of Food Science and Nutrition, University of Ulsan)
Kim, Min-Seon (Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine)
Abstract
The hypothalamus is a crucial organ for the maintenance of appropriate body fat storage. Neurons in the hypothalamic arcuate nucleus (ARH) detect energy shortage or surplus via the circulating concentrations of metabolic hormones and nutrients, and then coordinate energy intake and expenditure to maintain energy homeostasis. Malfunction or loss of hypothalamic ARH neurons results in obesity. Accumulated evidence suggests that hypothalamic inflammation is a key pathological mechanism that links chronic overconsumption of a high-fat diet (HFD) with the development of obesity and related metabolic complications. Interestingly, overnutrition-induced hypothalamic inflammation occurs specifically in the ARH, where microglia initiate an inflammatory response by releasing proinflammatory cytokines and chemokines in response to excessive fatty acid flux. Upon more prolonged HFD consumption, astrocytes and perivascular macrophages become involved and sustain hypothalamic inflammation. ARH neurons are victims of hypothalamic inflammation, but they may actively participate in hypothalamic inflammation by sending quiescence or stress signals to surrounding glia. In this mini-review, we describe the current state of knowledge regarding the contributions of neurons and glia, and their interactions, to HFD-induced hypothalamic inflammation.
Keywords
glia; hypothalamus; inflammation; neurons; obesity;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Abbott, N.J., Ronnback, L., and Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41-53.   DOI
2 Allan, S.M., Harrison, D.C., Read, S., Collins, B., Parsons, A.A., Philpott, K., and Rothwell, N.J. (2001). Selective increases in cytokine expression in the rat brain in response to striatal injection of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and interleukin-1. Brain Res. Mol. Brain Res. 93, 180-189.   DOI
3 Park, J., Joe, Y., Ryter, S.W., Surh, Y.J., and Chung, H.T. (2019). Similarities and distinctions in the effects of metformin and carbon monoxide in immunometabolism. Mol. Cells. 42, 292-300.
4 Poon, K., Barson, J.R., Ho, H.T., and Leibowitz, S.F. (2016). Relationship of the chemokine, CXCL12, to effects of dietary fat on feeding-related behaviors and hypothalamic neuropeptide systems. Front. Behav. Neurosci. 10, 51.
5 Ricci, G., Volpi, L., Pasquali, L., Petrozzi, L., and Siciliano, G. (2009). Astrocyte-neuron interactions in neurological disorders. J. Biol. Phys. 35, 317-336.   DOI
6 Roh, E., Song, D.K., and Kim, M.S. (2016). Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp. Mol. Med. 48, e216.   DOI
7 Schwartz, M.W. (2006). Central nervous system regulation of food intake. Obesity (Silver Spring) 14 Suppl 1, 1s-8s.   DOI
8 Serrats, J., Schiltz, J.C., Garcia-Bueno, B., van Rooijen, N., Reyes, T.M., and Sawchenko, P.E. (2010). Dual roles for perivascular macrophages in immune-to-brain signaling. Neuron 65, 94-106.   DOI
9 Moraes, J.C., Coope, A., Morari, J., Cintra, D.E., Roman, E.A., Pauli, J.R., Romanatto, T., Carvalheira, J.B., Oliveira, A.L., Saad, M.J., et al. (2009). Highfat diet induces apoptosis of hypothalamic neurons. PLoS One 4, e5045.   DOI
10 Allen, A.R., Eilertson, K., Sharma, S., Schneider, D., Baure, J., Allen, B., Rosi, S., Raber, J., and Fike, J.R. (2013). Effects of radiation combined injury on hippocampal function are modulated in mice deficient in chemokine receptor 2 (CCR2). Radiat. Res. 180, 78-88.   DOI
11 Argaw, A.T., Asp, L., Zhang, J., Navrazhina, K., Pham, T., Mariani, J.N., Mahase, S., Dutta, D.J., Seto, J., Kramer, E.G., et al. (2012). Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest. 122, 2454-2468.   DOI
12 Benarroch, E.E. (2005). Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc. 80, 1326-1338.   DOI
13 Biber, K., Neumann, H., Inoue, K., and Boddeke, H.W. (2007). Neuronal 'On' and 'Off' signals control microglia. Trends Neurosci. 30, 596-602.   DOI
14 Cai, D. and Liu, T. (2011). Hypothalamic inflammation: a double-edged sword to nutritional diseases. Ann. N. Y. Acad. Sci. 1243, E1-E39.   DOI
15 Douglass, J.D., Dorfman, M.D., Fasnacht, R., Shaffer, L.D., and Thaler, J.P. (2017). Astrocyte IKKbeta/NF-kappaB signaling is required for dietinduced obesity and hypothalamic inflammation. Mol. Metab. 6, 366-373.   DOI
16 Cardona, A.E., Pioro, E.P., Sasse, M.E., Kostenko, V., Cardona, S.M., Dijkstra, I.M., Huang, D., Kidd, G., Dombrowski, S., Dutta, R., et al. (2006). Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917-924.   DOI
17 De Souza, C.T., Araujo, E.P., Bordin, S., Ashimine, R., Zollner, R.L., Boschero, A.C., Saad, M.J., and Velloso, L.A. (2005). Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology 146, 4192-4199.   DOI
18 Dorfman, M.D., Krull, J.E., Douglass, J.D., Fasnacht, R., Lara-Lince, F., Meek, T.H., Shi, X., Damian, V., Nguyen, H.T., Matsen, M.E., et al. (2017). Sex differences in microglial CX3CR1 signalling determine obesity susceptibility in mice. Nat. Commun. 8, 14556.   DOI
19 Zhang, Y., Reichel, J.M., Han, C., Zuniga-Hertz, J.P., and Cai, D. (2017). Astrocytic process plasticity and IKKbeta/NF-kappaB in central control of blood glucose, blood pressure, and body weight. Cell Metab. 25, 1091-1102.e4.   DOI
20 Kierdorf, K. and Prinz, M. (2017). Microglia in steady state. J. Clin. Invest. 127, 3201-3209.   DOI
21 Gao, Y., Ottaway, N., Schriever, S.C., Legutko, B., Garcia-Caceres, C., de la Fuente, E., Mergen, C., Bour, S., Thaler, J.P., Seeley, R.J., et al. (2014). Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia 62, 17-25.   DOI
22 Horvath, T.L., Sarman, B., Garcia-Caceres, C., Enriori, P.J., Sotonyi, P., Shanabrough, M., Borok, E., Argente, J., Chowen, J.A., Perez-Tilve, D., et al. (2010). Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl. Acad. Sci. U. S. A. 107, 14875-14880.   DOI
23 Jung, C.H. and Kim, M.S. (2013). Molecular mechanisms of central leptin resistance in obesity. Arch. Pharm. Res. 36, 201-207.   DOI
24 Ioannou, M.S., Jackson, J., Sheu, S.H., Chang, C.L., Weigel, A.V., Liu, H., Pasolli, H.A., Xu, C.S., Pang, S., Matthies, D., et al. (2019). Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522-1535.e14.   DOI
25 Jais, A. and Brüning, J.C. (2017). Hypothalamic inflammation in obesity and metabolic disease. J. Clin. Invest. 127, 24-32.   DOI
26 Jha, M.K., Jo, M., Kim, J.H., and Suk, K. (2019). Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 25, 227-240.   DOI
27 Kim, J., Kwon, Y.H., Kim, C.S., Tu, T.H., Kim, B.S., Joe, Y., Chung, H.T., Goto, T., Kawada, T., Park, T., et al. (2018). The involvement of 4-1BB/4-1BBL signaling in glial cell-mediated hypothalamic inflammation in obesity. FEBS Open Bio 8, 843-853.   DOI
28 Thaler, J.P., Yi, C.X., Schur, E.A., Guyenet, S.J., Hwang, B.H., Dietrich, M.O., Zhao, X., Sarruf, D.A., Izgur, V., Maravilla, K.R., et al. (2012). Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153-162.   DOI
29 Shao, Z. and Schwarz, H. (2011). CD137 ligand, a member of the tumor necrosis factor family, regulates immune responses via reverse signal transduction. J. Leukoc. Biol. 89, 21-29.   DOI
30 Szepesi, Z., Manouchehrian, O., Bachiller, S., and Deierborg, T. (2018). Bidirectional microglia-neuron communication in health and disease. Front. Cell. Neurosci. 12, 323.   DOI
31 Tian, D.S., Peng, J., Murugan, M., Feng, L.J., Liu, J.L., Eyo, U.B., Zhou, L.J., Mogilevsky, R., Wang, W., and Wu, L.J. (2017). Chemokine CCL2-CCR2 signaling induces neuronal cell death via STAT3 activation and IL-1beta production after status epilepticus. J. Neurosci. 37, 7878-7892.   DOI
32 Valdearcos, M., Douglass, J.D., Robblee, M.M., Dorfman, M.D., Stifler, D.R., Bennett, M.L., Gerritse, I., Fasnacht, R., Barres, B.A., Thaler, J.P., et al. (2017). Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab. 26, 185-197.e3.   DOI
33 Lee, C.H., Shin, S.H., Kang, G.M., Kim, S., Kim, J., Yu, R., and Kim, M.S. (2019). Cellular source of hypothalamic macrophage accumulation in dietinduced obesity. J. Neuroinflammation 16, 221.   DOI
34 Kirchhoff, F., Dringen, R., and Giaume, C. (2001). Pathways of neuronastrocyte interactions and their possible role in neuroprotection. Eur. Arch. Psychiatry Clin. Neurosci. 251, 159-169.   DOI
35 Kwon, Y.H., Kim, J., Kim, C.S., Tu, T.H., Kim, M.S., Suk, K., Kim, D.H., Lee, B.J., Choi, H.S., Park, T., et al. (2017). Hypothalamic lipid-laden astrocytes induce microglia migration and activation. FEBS Lett. 591, 1742-1751.   DOI
36 Valdearcos, M., Robblee, M.M., Benjamin, D.I., Nomura, D.K., Xu, A.W., and Koliwad, S.K. (2014). Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep. 9, 2124-2138.   DOI
37 Verkhratsky, A. and Nedergaard, M. (2018). Physiology of astroglia. Physiol. Rev. 98, 239-389.   DOI
38 Williams, K., Alvarez, X., and Lackner, A.A. (2001). Central nervous system perivascular cells are immunoregulatory cells that connect the CNS with the peripheral immune system. Glia 36, 156-164.   DOI
39 Langlet, F., Levin, B.E., Luquet, S., Mazzone, M., Messina, A., Dunn-Meynell, A.A., Balland, E., Lacombe, A., Mazur, D., Carmeliet, P., et al. (2013). Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signals to the arcuate nucleus in response to fasting. Cell Metab. 17, 607-617.   DOI
40 Lee, C.H., Kim, H.J., Lee, Y.S., Kang, G.M., Lim, H.S., Lee, S.H., Song, D.K., Kwon, O., Hwang, I., Son, M., et al. (2018). Hypothalamic macrophage inducible nitric oxide synthase mediates obesity-associated hypothalamic inflammation. Cell Rep. 25, 934-946.e5.   DOI
41 Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., Bennett, F.C., Bohlen, C.J., Schirmer, L., Bennett, M.L., Munch, A.E., Chung, W.S., Peterson, T.C., et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487.   DOI
42 Lumeng, C.N. and Saltiel, A.R. (2011). Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111-2117.   DOI
43 Mizuno, T. (2015). Neuron-microglia interactions in neuroinflammation. Clin. Exp. Neuroimmunol. 6, 225-231.   DOI
44 Paolicelli, R.C., Bisht, K., and Tremblay, M.E. (2014). Fractalkine regulation of microglial physiology and consequences on the brain and behavior. Front. Cell. Neurosci. 8, 129.   DOI
45 Nakagawa, S., Izumi, Y., Takada-Takatori, Y., Akaike, A., and Kume, T. (2019). Increased CCL6 expression in astrocytes and neuronal protection from neuron-astrocyte interactions. Biochem. Biophys. Res. Commun. 519, 777-782.   DOI