• Title/Summary/Keyword: Arctic-East Asian warming

Search Result 3, Processing Time 0.022 seconds

Influence of Spring Warming in the Arctic-East Asia Region on the Arctic Oscillation and Dust Days in Korea Attributed to Dust Storms (북극-동아시아 지역의 봄철 온난화가 북극 진동-한국의 황사 사례일의 종관 기상에 미치는 영향 분석)

  • Ji-Sun Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.2
    • /
    • pp.121-135
    • /
    • 2024
  • This study examined the influence of near-surface atmospheric warming in the Arctic-East Asia region during spring (March-May) from 1991 to 2020 on the synoptic-scale meteorology of dust storm-induced dust days in Seoul, Korea, in response to the Arctic Oscillation. Increased springtime warming in the Arctic-East Asia region correlated with a reduction of six days in the occurrence of dust storm-induced dust days in Seoul, Korea, along with a decline in the intensity of these days by -1.6 ㎍ m-3yr-1 in PM10 mass concentration. The declining number of dust storm-induced dust days in Korea during the 2010s was the result of synoptic-scale meteorological analysis, which showed increased high-pressure activity as indicated by the negative potential vorticity unit. Moreover, a distinct pattern emerged in the distribution of dust storm-induced dust days in Korea based on the Arctic Oscillation Index (AOI), showing an increase in negative AOI and a decrease in positive AOI. Although the northward shift of the polar jet weakened the southerly low-pressure system activity over Mongolia and northern China, a reinforced high-pressure system formed over the Chinese continent during dust-storm-induced dust days with a negative AOI. This resulted in both a decrease in the frequency of dust-storm-induced dust days and reduction in wind speeds, facilitating their transport from source regions to Korea. Conversely, on days with positive AOIs, an extensive warm and stagnant high-pressure system dominated mainland China, accompanied by further cooling of the northern segment of the polar jet. A notable decline in wind speed in the lower troposphere across the Mongolia-northern China-Korea region diminished the occurrence of dust storm-induced dust days and also weakened their long-range transport.

Present Distribution of Cryophilous Plants and Palaeoenvironment in the Korean Peninsula (한반도 한지선호식물의 분포와 고환경)

  • Kong, Woo-seok
    • The Korean Journal of Quaternary Research
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 1991
  • The distribution of cryophilous arctic-alpine and alpine plants in Korea is reviewed in connection with palaeoenvironment, along with a discussion to their origins, patterns of migration, and their refugia. At present, the estimated number of Korean arctic-alpine and alpine species is 419, and this includes 75 arctic-alpine species, 239 alpine species and 105 Korean endemic alpine species. The disjunctive distribution of cryophilous arctic-alpine and alpine plants is likely to be due to first, the downslope and southward expansion of those species towards the Korean peninsula as a primary refugia from the arctic region as the Pleistocene glacial phases approached, and then their subsequent isolation upslope in mountain areas toward a secondary refugia as the interglacial and post-glacial climatic ameliorations followed; secondly, the expansion of forest tree communities on lowland and montane areas subsequent to the end of the Pleistocene has had the effect of dividing formerly high mountains as a result of the increased competition; and thirdly, the general disapperance or restriction of available habitats for arctic-alpine and alpine species because of post-glacial climatic amelioration. The existence of 139 alpine species exclusively in the north of Korea may be due to the following reasons; first, frequent exchanges of alpine floras with other neighbouring East Asian regions would have been facilitated; secondly, there are numerous high mountains available for the alpine plants to survive and prosper during the post-glacial period; thirdly, the existence of easy accesses between mountains within the north, which has enabled alpine floras to migrate when necessary; and finally, the availability of diverse environments and habitats for the alpine flora of the north. However, the continued survival of those species in Korea at the world's or East Asia's southernmost limits of their distribution for many species is in danger if global warming associated with the greenhouse effect takes place.

  • PDF

Long-term pattern changes of sea surface temperature during summer and winter due to climate change in the Korea Waters

  • In-Seong Han;Joon-Soo Lee;Hae-Kun Jung
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.11
    • /
    • pp.639-648
    • /
    • 2023
  • The sea surface temperature (SST) and ocean heat content in the Korea Waters are gradually increased. Especially the increasing trend of annual mean SST in the Korea Water is higher about 2.6 times than the global mean during past 55 years (1968-2022). Before 2010s, the increasing trend of SST was led by winter season in the Korea Waters. However, this pattern was clearly changed after 2010s. The increasing trend of SST during summer is higher about 3.9 times than during winter after 2010s. We examine the long-term variations of several ocean and climate factors to understand the reasons for the long-term pattern changes of SST between summer and winter in recent. Tsushima warm current was significantly strengthened in summer compare to winter during past 33 years (1986-2018). The long-term patterns of Siberian High and East Asian Winter Monsoon were definitely changed before and after early- or mid-2000s. The intensities of those two climate factors was changed to the increasing trend or weakened decreasing trend from the distinctive decreasing trend. In addition, the extreme weather condition like the heatwave days and cold spell days in the Korea significantly increased since mid- or late-2000s. From these results, we can consider that the occurrences of frequent and intensified marine heatwaves during summer and marine cold spells during winter in the Korea Waters might be related with the long-term pattern change of SST, which should be caused by the long-term change of climate factors and advection heat, in a few decade.