• 제목/요약/키워드: Architectural-nonstructural

검색결과 12건 처리시간 0.02초

건축 비구조재의 내진설계요소 및 내진설계하중에 관한 고찰 (Investigation on Seismic Design Component and Load for Nonstructural Element)

  • 최인섭;이주희;손정훈;김준희
    • 대한건축학회논문집:구조계
    • /
    • 제35권5호
    • /
    • pp.117-124
    • /
    • 2019
  • Nonstructural elements are installed according to the function of a building, and refer to the elements other than a structural system that resists external loads. Although the nonstructural elements had the largest part of seismic loss of buildings, seismic design of buildings mainly focuses on structural system and the seismic design of nonstructural elements are rarely conducted. In this study, the seismic design provisions of nonstructural elements presented in Uniform Building Code (UBC) and International Building Code (IBC) were investigated in order to analyze the seismic design considerations of nonstructural elements presented in Korean Building Code (KBC). The results showed that the equivalent static load applied to seismic design of nonstructural elements was revised to take into consideration a total of five items such as effective ground acceleration, vertical amplification factor, response amplification factor, response modification factor, importance factor.

경주 9.12지진의 피해 및 비구조요소 내진설계기준 (Damage of Gyeongju 9.12 Earthquakes and Seismic Design Criteria for Nonstructural Elements)

  • 이수현;조태구;임환택;최병정
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.561-567
    • /
    • 2016
  • After the Gyeong-ju 9.12 earthquake, we found the necessity of seismic design of nonstructural element is important to reduce damages in view of properties and economic losses. This study focused on the investigation of damages including both properties and human beings. It was found that most of the damages are leaking of water pipe line, rupture of glasses, spalling of roof finishing, cracks of building, and falling from roof. It was also found that the seismic design force of nonstructural elements is taking account into the natural periods, amplification factors, response modification factors to forsee inelastic behaviors. From this studies, it is recommended that more studies are necessary on the seismic design force of nonstructural element.

유한요소해석을 활용한 비구조 조적벽의 면외방향 설계 (Design for Out-of-Plane Direction of Nonstructural Masonry Walls Using Finite Element Analysis)

  • 최명규;유은종;김민재
    • 한국지진공학회논문집
    • /
    • 제26권1호
    • /
    • pp.23-30
    • /
    • 2022
  • This study proposed a simplified finite element analysis procedure for designing the nonstructural masonry wall in the out-of-plane direction. The proposed method is a two-step elastic analysis procedure by bilinearizing the behavior of the masonry wall. The first step analysis was conducted with initial stiffness representing the behavior up to the effective-yield point, and the second step analysis was conducted with post-yield stiffness. In addition, the orthotropic material property of the masonry was considered in the FE analysis. The maximum load was estimated as the sum of the maximum loads in the first and second step analyses. The maximum load was converted into the moment coefficients and compared with those from the yield line method applied in Eurocode 6. The moment coefficients calculated through the proposed procedure showed a good match with those from the yield line method with less than 6% differences.

A novel risk assessment approach for data center structures

  • Cicek, Kubilay;Sari, Ali
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.471-484
    • /
    • 2020
  • Previous earthquakes show that, structural safety evaluations should include the evaluation of nonstructural components. Failure of nonstructural components can affect the operational capacity of critical facilities, such as hospitals and fire stations, which can cause an increase in number of deaths. Additionally, failure of nonstructural components may result in economic, architectural, and historical losses of community. Accelerations and random vibrations must be under the predefined limitations in structures with high technological equipment, data centers in this case. Failure of server equipment and anchored server racks are investigated in this study. A probabilistic study is completed for a low-rise rigid sample structure. The structure is investigated in two versions, (i) conventional fixed-based structure and (ii) with a base isolation system. Seismic hazard assessment is completed for the selected site. Monte Carlo simulations are generated with selected parameters. Uncertainties in both structural parameters and mechanical properties of isolation system are included in simulations. Anchorage failure and vibration failures are investigated. Different methods to generate fragility curves are used. The site-specific annual hazard curve is used to generate risk curves for two different structures. A risk matrix is proposed for the design of data centers. Results show that base isolation systems reduce the failure probability significantly in higher floors. It was also understood that, base isolation systems are highly sensitive to earthquake characteristics rather than variability in structural and mechanical properties, in terms of accelerations. Another outcome is that code-provided anchorage failure limitations are more vulnerable than the random vibration failure limitations of server equipment.

석탑문화재 손상 유형 및 영향 요인에 따른 손상도 평가 (Damage Assessment According to Damage Types and Influential Factors of Stone Pagoda Structure)

  • 김호수;홍석일;전건우;김덕문;박찬민
    • 한국공간구조학회논문집
    • /
    • 제18권2호
    • /
    • pp.87-97
    • /
    • 2018
  • Stone pagoda structures have continued to be aged due to the combination of various damage factors. However, some studies on nonstructural damage have been carried out, but assessment studies on structural damage have not been done in various ways. Therefore, in this study, structural and nonstructural influencing factors according to the damage types are classified and the damage assessment according to the structural influencing factors affecting the behavior of the stone pagoda structure is performed. In addition, the damage rating classification criteria for each type of structural damages or damage locations are presented, and the damage index is calculated by providing the criteria for the classification of damage according to the degree of damage to which the damage is caused. Therefore, this study can evaluate quantitatively the damage status of stone pagoda structures.

석고 패널이 부착된 천장 시스템의 내진성능 평가를 위한 3축 진동실험 (Triaxial Shake Table Test about Seismic Performance of Ceiling System with Gypsum Panels)

  • 박해용;전법규;김재봉;김민욱
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.143-153
    • /
    • 2019
  • In this study, a full scale 3-axes shake table test for M-bar and T-bar type ceilings commonly used in the country was conducted. Through damage inspection during the test, seismic performance of ceilings according to variables, such as clearance between wall mold and ceiling as well as existence of facilities, was evaluated. A test frame consisted of square hollow section members was used for the shake table test. The experimental method was performed as a fragility test using required response spectrum described in ICC-ES AC156. In the case of architectural nonstructural component that contain ceilings, it mainly is evaluated the performance by post-test visual inspection. For the evaluation of seismic performance of ceilings, this study classified and defined damaged items for targeted ceiling system referring to illustrative damage according to nonstructural performance levels accordance with ASCE 41 and previous studies. And proposed illustrative damage items classification was utilized to compare the degree of the damage according to experimental variables. The experiment results confirmed that differences in boundary conditions due to the clearance at wall mold and the installation of facilities had a significant effect on the seismic performance of the ceiling.

우리나라 병원건축물의 내진성능향상을 위한 기초연구 (Preliminary Study on the Enhancement of Seismic Performance of Korea Hospital Buildings)

  • 김남희;홍성걸
    • 한국지진공학회논문집
    • /
    • 제20권7_spc호
    • /
    • pp.509-516
    • /
    • 2016
  • Secure operation of hospitals during and right after earthquake is essential. Past lessons from earthquake damages have shown that most of the injured and the death occurred within 30 minutes after earthquake and the portion of nonstructural damage has become significant. However, hospital buildings in Korea have not prepared fully to address such rising issues. This paper is to study what type of damage patterns are related to hospital buildings and how to develop a preparedness plan to keep hospitals operational at all earthquakes if possible. This paper first reviews on past earthquake damages reported as critical to hospital buildings while classifying them into four groups: (1) structural element; (2) architectural-nostructural element; (3) medical equipments and contents; and (4) utility facility. Upon such classification, some detailed concerns can be specified under each group explicitly. Then a hierarchy for hospital building is also developed for the classified groups, which enables us to identify required things for the enhancement of seismic performance of hospital building that consists of heterogeneous elements. To upgrade the level of seismic performance for existing hospital buildings, the concept of performance-based approach can be adopted to address the heterogeneous problems in a systematic and stepwise manner. Finally a conceptual framework for the seismic risk assessment for hospital building is proposed toward the seismic enhancement of hospital buildings using performance-based approach.

조적채움벽 골조의 내진성능평가를 위한 등가 스트럿 모델의 비교연구 (A Comparison Study of Equivalent Strut Models for Seismic Performance Evaluation of Masonry-Infilled Frame)

  • 유은종;김민재;정대계
    • 한국지진공학회논문집
    • /
    • 제18권2호
    • /
    • pp.79-87
    • /
    • 2014
  • Masonry-infilled walls have been used in reinforced concrete(RC) frame structures as interior and exterior partition walls. Since these walls are considered as nonstructural elements, they were only considered as additional mass. However, infill walls tend to interact with the structure's overall strength, rigidity, and energy dissipation. Infill walls have been analyzed by finite element method or transposed as equivalent strut model. The equivalent strut model is a typical method to evaluate masonry-infilled structure to avoid the burden of complex finite element model. This study compares different strut models to identify their properties and applicability with regard to the characteristics of the structure and various material models.

현대 건축의 형태구성과 해체주의 패션의 특성에 관한 연구 (A Study on the Construction of Modern Architectural Form and the Characteristics of Deconstructional Fashion)

  • 김혜정;임영자
    • 복식
    • /
    • 제40권
    • /
    • pp.137-147
    • /
    • 1998
  • Fahion as the form construction of decon-structivistic architecture was analyzed by dividing it into the intrinsic aspect and the formal aspect through an introduction of three characteristic architectural principles into fashion. Intrinsic deconstructivistic fashion as the construction of architectural form has the mixurte of genders both in a form of transvestic and in a form of genderless look as dualism, and can be characterized by pluralistic nationlism with the emergence of the Third World alienated from the international society, and so forth. Difference and the prefixes of dis-and de- are schizophrenic mystic illusionism, chance effect and the differance of space and time and is supporting Jacques Derrida's chiasmus that is the perspective of collage in painting and the multiple observation of collage in painting and the multiple observation point as the play of borrowing the surrealistic technique. The formal construction of deconstructivistic fashion the construction of architectural form has intertextuality material, hybridization of items and the blending of modes and another sphere. Trace as icon deconstrucion attains historical analysis. Dis and de in fashion are showing the retrogre-ssion of gravity through decomposition, decon-tinuity and disjunction emerge nonstructural silho-uette, juxtaposition, inversion and replace- ment of underwear and outer garments. Their decentring expression emerged as construction through mixture and repetition as well as overlapping of planes or spaces. And their disjuctive representation appeared in the form of mutual juxtaposition and substitution with the double-side of formal construction in functional terms.

  • PDF

지반-구조물-설비 상호작용을 고려한 지진응답 특성에 관한 해석적 연구 (An Analytical Study on Seismic Response Characteristics Considering Soil-Structure-Equipment Interaction)

  • 오현준;김유석
    • 한국지진공학회논문집
    • /
    • 제27권6호
    • /
    • pp.253-263
    • /
    • 2023
  • Non-structural elements, such as equipment, are typically affixed to a building's floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building's structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.