• 제목/요약/키워드: Architectural Walls

검색결과 409건 처리시간 0.028초

Out-of-plane performance of infill masonry walls reinforced with post-compressed wedges under lateral-concentrated push load

  • Sanghee Kim;Ju-Hyun Mun;Jun-Ryeol Park;Keun-Hyeok Yang;Jae-Il Sim
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.489-499
    • /
    • 2024
  • Infill masonry walls are vulnerable to lateral loads, including seismic, wind, and concentrated push loads. Various strengthening metal fittings have been proposed to improve lateral load resistance, particularly against seismic loads. This study introduces the use of post-compressed wedges as a novel reinforcement method for infill masonry walls to enhance lateral load resistance. The resistance of the infill masonry wall against lateral-concentrated push loads was assessed using an out-of-plane push-over test on specimens sized 2,300×2,410×190 mm3. The presence or absence of wedges and wedge spacing were set as variables. The push-over test results showed that both the unreinforced specimen and the specimen reinforced with 300 mm spaced wedges toppled, while the specimen reinforced with 100 mm spaced wedges remained upright. Peak loads were measured to be 0.74, 29.77, and 5.88 kN for unreinforced specimens and specimens reinforced with 100 mm and 300 mm spaced wedges, respectively. Notably, a tighter reinforcement spacing yielded a similar strength, as expected, which was attributed to the increased friction force between the masonry wall and steel frame. The W-series specimens exhibited a trend comparable to that of the displacement ductility ratio. Overall, the findings validate that post-compressed wedges improve the out-of-plane strength of infill masonry walls.

17세기~19세기 영건 및 산릉의궤에 기록된 벽체에 관한 연구 - 벽체의 구성 및 미장재의 혼합비를 중심으로 - (A Study on the Walls Recorded in the Yeonggeon-and Sanreng-uigwes in the 17th-19th Centuries - Focusing on the composition of wall and mixing ratio of plaster materials -)

  • 황희영;권양희
    • 대한건축학회논문집:계획계
    • /
    • 제36권5호
    • /
    • pp.105-116
    • /
    • 2020
  • In this study, the royal protocols of the Joseon Dynasty, known as uigwes, were reviewed to clarify the materials and structure of Korean traditional walls. For this, the Yeonggeon-and Sanreng-uigwes were thoroughly reviewed, and then the names, materials, and construction methods of the traditional walls were systematically organized. In addition, mix proportions of plastering materials used in the walls were estimated based on the records in the uigwes; these were compared with the ratios specified in the current specifications. As a result of the comprehensive review, it was found that the mix proportions of the plastering materials varied depending on importance of buildings, type of walls, and the raw materials. Based on this, it was concluded that the characteristics of each uigwe should be considered when studying the mix proportion of materials for the traditional walls. It was also found that there were differences between the traditional and modern specifications for the wall constructions. That is, historical records and the specifications currently used were different in terms of constituent materials, construction methods and mix proportions. As a cause of the difference, the disconnection of the traditional methods and the introduction of foreign plastering techniques during the rapid social change in the 20th century were suggested.

Improvement of a Requirement for Providing Special Boundary Element Considering Feature of Domestic High-rise Shear Walls

  • Kim, Taewan
    • Architectural research
    • /
    • 제15권1호
    • /
    • pp.43-52
    • /
    • 2013
  • The reinforced concrete shear walls are being widely used in the domestic high-rise residential complex buildings. If designed by current codes, the special boundary element is needed in almost all high-rise shear wall buildings. This is because the equation for determining the provision of the special boundary element in the current codes cannot reflect the characteristics of the domestic high-rise shear walls with high axial load ratio and high proportion of elastic displacement to total displacement. In this study, a new equation to be able to reflect the characteristics is proposed. By using the equation, the special boundary element may not be necessary in certain cases so that structural engineers can relieve the burden of installing the special boundary element in every high-rise shear wall.

SUPPLY CHAIN MANAGEMENT SYSTEM FOR CURTAIN WALLS USING RFID TECHNOLOGY

  • Sangyoon Chin;Suwon Yoon;Yea-Sang Kim;Cheolho Choi;Do-Bum Lee
    • 국제학술발표논문집
    • /
    • The 1th International Conference on Construction Engineering and Project Management
    • /
    • pp.1022-1027
    • /
    • 2005
  • This research presents a collaborative supply chain management system for curtain walls using Radio Frequency IDentification (RFID) to track the product and information flow among participants in high-rise building construction projects. This resarch developed a process model and a strategy for effective utilization of RFID technology through the curtain wall life-cycle. Then an information management system was developed to support the supply chain management of curtain walls with incorporating RFID into curtain wall products flow throughout the life-cycle. The system has been tested for validation and verification in a real world project.

  • PDF

철근콘크리트 벽체의 비선형 해석을 위한 거시 모델 (Macro Model for Nonlinear Analysis of Reinforced Concrete Walls)

  • 김동관;엄태성;임영주;이한선;박홍근
    • 콘크리트학회논문집
    • /
    • 제23권5호
    • /
    • pp.569-579
    • /
    • 2011
  • 주기하중을 받는 철근콘크리트 벽체는 형상비, 배근상세, 재하 조건 등에 따라 복잡한 비탄성 거동을 보인다. 이 연구에서는 벽체의 휨-압축 거동과 전단거동을 간편하게 고려할 수 있는 거시 요소를 이용한 비선형 해석 방법을 개발하였다. 철근콘크리트 벽체의 휨-압축 거동 및 전단거동은 각각 길이 방향 및 대각 방향 1축 요소로 이상화된다. 1축 요소는 콘크리트와 철근으로 구성되고, 비선형 재료 모델로서 1축 상태에서 반복하중을 받는 콘크리트와 철근의 주기거동 모델을 사용한다. 검증을 위하여 제안된 방법을 사용하여 주기하중을 받는 철근콘크리트 단일벽 및 병렬벽의 비선형 해석을 수행하였다. 그 결과 제안된 방법은 휨-압축 거동이 지배적인 세장한 벽체와 전단거동이 지배적인 낮은 벽체의 주기거동을 정확하게 예측하였다. 제안된 거시 해석 모델은 모델링이 편리하고 수치해석의 안정성이 우수하므로, 전단벽 및 코어벽이 사용된 건물의 비선형 해석을 위한 범용 프로그램으로 개발이 용이할 것으로 판단된다.

Numerical study on steel plate-concrete composite walls subjected to projectile impacts

  • Lee, Kyungkoo;Shin, Jinwon;Lee, Jungwhee;Kim, Kapsun
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.225-240
    • /
    • 2022
  • Local responses of steel plate-concrete composite (SC) walls under impact loads are typically evaluated using design equations available in the AISC N690s1-15. These equations enable design of impact-resistant SC walls, but some essential parts such as the effects of wall size and shear reinforcement ratio have not been addressed. Also, since they were developed for design basis events, improved equations are required for accurate prediction of the impact behaviors of SC walls for beyond design basis impact evaluation. This paper presents a numerical study to construct a robust numerical model of SC walls subjected to impact loads to reasonably predict the SC-wall impact behavior, to evaluate the findings observed from the impact tests including the effects of the key design parameters, and to assess the actual responses of full-scale SC walls. The numerical calculations are validated using intermediate-scale impact tests performed previously. The influences of the fracture energy of concrete and the conservative aspects of the current design equations are discussed carefully. Recommendations are made for design practice.

창덕궁 후원부의 공간경계요소(담장)에 관한 연구 (A Study for Walls as Space boudary elements of Changdeok-gung Garden)

  • 조정식;조진동
    • 건축역사연구
    • /
    • 제24권1호
    • /
    • pp.41-50
    • /
    • 2015
  • This study aims to investigate the physical characteristics and architectural ornaments of the walls (DamJang) and their bordering area that defines the Rear Garden of Changdeok-gung, one of the Royal Palaces in Seoul. This area, centered on Buyong-ji(부용지) and Aeryeon-ji(애련지), features the morphological diversity of buildings, walls, gates and stone bases in the palace. The findings are summarized as follows: First, DamJang, as a basic architectural element for the space organization, takes a set of various forms featuring different construction materials while responding positively to the physiographic nature of the surroundings; Second, DamJang along with their gates, also features different types of ornamental expressions which also suggest the hierarchy of its building and space; Third, typical of the traditional garden design in Korea are a group of DamJang standing as independent structures mostly around Buyong-ji and Aeryeon-ji whose finishing conditions also differ based on the nature of the space; Fourth, among commonly observed examples of DamJang in the Rear Garden and Changdeok-gung palace-wide, is a 'T' shaped wall whose heights and materials function as a design element for the garden.

전단스팬비가 다른 보수된 벽체의 성능평가 (Performance of Repaired Structural Walls with Different Shear Span Ratios)

  • 한상환;오창학;이리형
    • 콘크리트학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2003
  • 철근 콘크리트 구조 벽체는 횡력에 대해 효과적으로 저항하고 변위를 제어할 수 있어 널리 이용되지만 지진 발생시 구조벽체가 붕괴에 이르지 않는다 하더라도 어느 정도의 손상은 예상해야 한다. 본 연구에서는 심하게 손상된 유효전단스팬비가 다른 철근 콘크리트 구조벽체의 단순 보수를 통해서 그 구조적 성능이 원래의 실험체에 비해 어느 정도 회복되는가를 평가하였다. 본 연구를 위하여 3개의 실험체 (전단스팬비 1, 2, 3)를 만들어 실험하였다. 실험은 원실험체를 점증 반복가력 재하로 심하게 손상시킨 후 실험체를 보수한 후 다시 재하하였다. 보수는 0.2mm이상의 균열부분의 콘크리트는 새 콘크리트로 교체하였고, 0.2mm이하의 균열은 단지 에폭시로 보수하였다. 또한 심하게 손상된 벽체 단부 부분의 철근은 같은 종류의 새 철근으로 교체되었다. 본 실험 연구를 통하여 단순보수를 통하여 벽체 강도는 회복 가능하나 변형능력은 회복이 되지 않는 것으로 나타났다.

조적조 비내력벽을 가진 기존 학교 구조물의 내진 성능평가 (Evaluation of Performance of Korean Existing School Buildings with Masonry Infilled Walls Against Earthquakes)

  • 문기훈;전용률;이창석;한상환
    • 한국지진공학회논문집
    • /
    • 제16권6호
    • /
    • pp.37-46
    • /
    • 2012
  • In Korea, most existing school buildings have been constructed with moment frames with un-reinforced infill walls designed only considering gravity loads. Thus, the buildings may not perform satisfactorily during earthquakes expected in Korea. In exterior frames of the building, un-reinforced masonry infill walls with window openings are commonly placed, which may alter the structural behavior of adjacent columns due to the interaction between the wall and column. The objective of this study is to evaluate the seismic performance of existing school buildings according to the procedure specified in ATC 63. Analytical models are proposed to simulate the structural behavior of columns, infill walls and their interaction. The accuracy of the proposed model is verified by comparing the analytical results with the experimental test results for one bay frames with and without infill walls with openings. For seismic performance evaluation, three story buildings are considered as model frames located at sites having different soil conditions ($S_A$, $S_B$, $S_C$, $S_D$, $S_E$) in Korea. It is observed that columns behaves as a short columns governed by shear due to infill masonry walls with openings. The collapse probabilities of the frames under maximum considered earthquake ranges from 62.9 to 99.5 %, which far exceed the allowable value specified in ATC 63.

Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures

  • Choi, Byong-Jeong;Kim, Won-Ki;Kim, Woo-Bum;Kang, Cheol-Kyu
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.473-491
    • /
    • 2013
  • The primary objectives of this paper are to describe the buckling patterns and to determine the squash load of steel plate-concrete (SC) walls. The major variables in this study were the width-thickness (B/t) ratio and yield strength of surface steel plates. Six SC walls were tested, and the results include the maximum strength, buckling pattern of steel plates, strength of headed studs, and behavior of headed studs. Based on the test results, the effects of the B/t ratio on the compressive strength are also discussed. The paper also presents recommended effective length coefficients and discusses the effects of varying the yield strength of the steel plate, and the effects of headed studs on the performance of SC structures based on the test results and analysis.