• Title/Summary/Keyword: Arching

Search Result 186, Processing Time 0.022 seconds

A Simulation of Arching Earth Pressure Exerted on Vertical Shafts through Centrifuge Tests (원심모형실험에 의한 수직구 아칭토압 모사)

  • Lee, Dae-Soo;Kim, Kyoung-Yul;Hong, Sung-Yun;Kim, Yoo-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1073-1080
    • /
    • 2010
  • In this paper, the centrifuge model tests were conducted for the sake of measuring three dimensional arching earth pressure while two step excavation of the vertical shaft. The results of the centrifuge model tests were compared to newly suggested arching earth pressure equation proposed by Kim et al(2009) and two dimension earth pressure(Rankine). As the results, Measured arching earth pressure revealed about 35 percentages of two dimension earth pressure(Rankine) and almost same as that of newly suggested arching earth pressure equation.

  • PDF

Expansion of Terzaghi Arching Formula to Consider an Arbitrarily Inclined Sliding Surface and Examination of its Effect

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.7
    • /
    • pp.27-33
    • /
    • 2016
  • This study expanded Terzaghi arching formula, which assumed a vertical surface as a sliding surface, to consider an arbitrarily inclined surface as a sliding surface and examined the effect of a sliding surface. This study firstly developed a formula to expand the existing Terzaghi arching formula to consider an inclined surface as well as a vertical surface as a sliding surface under the downward movement of a trap door. Using the expanded formula, the effect of excavation, ground, and surcharge conditions on a vertical stress was examined and the results were compared with them from Terzaghi arching formula. The comparison indicated that the induced vertical stress was highly affected by the angle of an inclined sliding surface and the degree of influence depended on the excavation, ground, and surcharge conditions. It is expected that the results from this study would provide a better understanding of various arching phenomenon in the future.

Effects of reinforcement on two-dimensional soil arching development under localized surface loading

  • Geye Li;Chao Xu;Panpan Shen;Jie Han;Xingya Zhang
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.341-358
    • /
    • 2024
  • This paper reports several plane-strain trapdoor tests conducted to investigate the effects of reinforcement on soil arching development under localized surface loading with a loading plate width three times the trapdoor width. An analogical soil composed of aluminum rods with three different diameters was used as the backfill and Kraft paper with two different stiffness values was used as the reinforcement material. Four reinforcement arrangements were investigated: (1) no reinforcement, (2) one low stiffness reinforcement R1, (3) one high stiffness reinforcement R2, and (4) two low stiffness reinforcements R1 with a backfill layer in between. The stiffness of R2 was approximately twice that of R1; therefore, two R1 had approximately the same total stiffness as one R2. Test results indicate that the use of reinforcement minimized soil arching degradation under localized surface loading. Soil arching with reinforcement degraded more at unloading stages as compared to that at loading stages. The use of stiffer reinforcement had the advantages of more effectively minimizing soil arching degradation. As compared to one high stiffness reinforcement layer, two low stiffness reinforcement layers with a backfill layer of certain thickness in between promoted soil arching under localized surface loading. Due to different states of soil arching development with and without reinforcement, an analytical multi-stage soil arching model available in the literature was selected in this study to calculate the average vertical pressures acting on the trapdoor or on the deflected reinforcement section under both the backfill self-weight and localized surface loading.

A Study on the Arching Effect due to Embankment Piles (성토지지말뚝에 의한 아칭효과 연구)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.375-381
    • /
    • 2017
  • A full-scale field test was conducted to investigate the arching effect of an embankment pile. The arching effect calculated from the test results was compared with theoretical values. Measurements obtained from a load cell and an earth pressure cell during the field test reflected the arching effect of the embankment pile well. The arching effect measured by load cells for an embankment height of 3m or less was smaller than the theoretical value with the assumption of plain strain.The measured effect for a height of 4 m or more was larger than the theoretical value. In contrast to the consistent decrease of the theoretical arching effect, the arching effect obtained from the field test shows continually increasing trends. The arching effects calculated from the earth pressure cells were greater than those from the theory under the plain strain assumption, but the trend was similar to the theoretical one. The arching effects measured by the earth pressure cells an embankment heights of 2, 3, 4, 5, and 6 m were 1.05, 1.23, 1.29, 1.28, and 1.29 times greater than those from the theory under the assumption of plain strain. The arching effects from the field test were much greater than those from the theory under the installation of a pile grid.

Estimation of lateral pile resistance incorporating soil arching in pile-stabilized slopes

  • Neeraj, C.R.;Thiyyakkandi, Sudheesh
    • Geomechanics and Engineering
    • /
    • v.23 no.5
    • /
    • pp.481-491
    • /
    • 2020
  • Piles installed in row(s) are used as an effective technique to improve the stability of soil slopes. The analysis of pile-stabilized slopes require a reliable prediction of lateral resistance offered by the piles. In this work, an analytical solution is developed to estimate the lateral resistance offered by the stabilizing piles in sand and c - 𝜙 soil slopes considering soil arching phenomenon. The soil arching in both horizontal direction (between the neighboring piles) and vertical direction (in the active wedge in front of the pile row) are studied and their effects are incorporated in the proposed model. The shape of soil arch is assumed to be circular and principal stress trajectories are defined separately for both modes of arching. Experimental and numerical studies found in literature were used to validate the proposed method. A detailed parametric analysis was performed to study the influence of pile diameter, center-to-center spacing, slope angle and angle of internal friction on the lateral pile resistance.

Investigation of slope reinforcement with drilled shafts in colluvium soils

  • Lia, An-Jui;Wang, Wei-Chien;Lin, Horn-Da
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.71-86
    • /
    • 2022
  • In Taiwan, an efficient approach for enhancing the stability of colluvium slopes is the drilled shaft method. For slopes with drilled shafts, the soil arching effect is one of the primary factors influencing slope stability and intertwines to the failure mechanism of the pile-soil system. In this study, the contribution of soil arching effect to slope stability is evaluated using the FEM software (Plaxis 3D) with the built-in strength reduction technique. The result indicates the depth of the failure surface is influenced by the S/D ratio (the distance to the diameter of piles), which can reflect the contribution of the soil arching effect to soil stability. When α (rock inclination angles)=β (slope angles) is considered and the S/D ratio=4, the failure surface of the slope is not significantly influenced by the piles. Overall, the soil arching effect is more significant on α=β, especially for the steep slopes. Additionally, the soil arching effect has been included in the proposed stability charts. The proposed charts were validated through two case studies, including that of the well-known Woo-Wan-Chai field in Taiwan. The differences in safety factor (FoS) values between the referenced literature and this study was approximately 4.9%.

Arching Effects on Stability of Translating Rigid Retaining Walls (아칭효과가 평행이동하는 강성옹벽의 안정성에 미치는 영향)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.127-136
    • /
    • 2004
  • The soil arching in the backfill, which affects the magnitude and distribution of active earth pressure on a retaining wall, has also an effect on the stability and cross-sectional area of the retaining wall. In this study, results obtained from Paik's equation that includes arching effect on active earth pressure are compared with those from Coulomb theory to investigate the influence of the soil arching on active earth pressure, overturning moment, stability and cross-sectional area of translating rigid retaining walls. The comparisons show that the active forces including arching effects are always higher than those from Coulomb theory, irrespective of $\phi$ and $\delta$ values. The overturning moments, shear force and moment on the rigid wall are also higher when considering arching effects than when not considering arching effects. The deviation of shear forces and moments by including and excluding arching effects becomes maximum at the height of 0.02-0.08 times wall height from the base of the wall. Therefore, if a translating rigid retaining walls is designed based on Coulomb theory, the wall may reach sliding and overturning failures due to arching effect in the backfill and the cross-sectional area of the wall, especially at lower part of the wall, may not be sufficient to resist to shear force and moment.

Arching Action Effect for Inelastic Seismic Responses of Bridge Structures (교량의 비탄성 지진응답에 대한 아칭작용의 영향)

  • Song, Jong-Keol;Nam, Wang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.131-143
    • /
    • 2009
  • Under transverse earthquake shaking, arching action of bridge structures develops along the deck between the abutments thus providing the so-called deck resistance. The magnitude of the arching action for bridge structures is dependent on the number of spans, connection condition between deck and abutment or piers, and stiffness ratio between superstructure and substructure. In order to investigate the arching action effects for inelastic seismic responses of PSC Box bridges, seismic responses evaluated by pushover analysis, capacity spectrum analysis and nonlinear time-history analysis are compared for 18 example bridge structures with two types of span numbers (short bridge, SB and long bridge, LB), three types of pier height arrangement (regular, semi-regular and irregular) and three types of connection condition between superstructure and substructure (Type A, B, C). The arching action effects (reducing inelastic displacement and increasing resistance capacity) for short bridge (SB) is more significant than those for long bridge (LB). Semi-regular and irregular bridge structures have more significant arching action than regular bridges.

A Theoretical Study on Arching Effect of Embankment Pile Grid (격자배치 성토지지말뚝의 아칭효과에 대한 이론적 연구)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.302-309
    • /
    • 2017
  • The influence of the pile diameter, center to center pile spacing, internal friction angle of embankment soil, and height of embankment on the arching efficacy of the embankment pile was investigated. The arching efficacy, which was derived by the arch model developed in the embankment soil was calculated using two methods, one that considers crown failure of the arch and the other that considers load on the pile cap and critical relative spacing ratio for which the arching efficacy calculated by the two methods are the same. According to the computed results in this study, the arching efficacy calculated from a consideration of the load on pile cap governs when the relative spacing ratio becomes smaller and that calculated from the theory of crown failure governs when the relative spacing ratio becomes larger. The critical relative spacing ratio below which the arching efficacy calculated from a consideration of the load on pile cap governs the design decreases with increasing value, which is defined by the ratio of the pile diameter to the pile center to center spacing. Critical relative spacing ratios, which correspond to the values of 0.5 and 0.2 were 0.35 and 0.85, respectively. Considering the computed results, the critical relative spacing ratio decreases with increasing Rankine passive earth pressure coefficient and critical relative spacing ratios, which correspond to values of 5 and 2, were 0.23 and 0.85, respectively. The arching efficacy, which corresponds to the area ratio of 9%, was 54% and the one that corresponds to the value of 3 was 61%; the critical relative spacing ratios, which correspond to those arching efficacies, were greater than 0.5.

Active Earth Pressure Acting on Excavation Wall Located Near Existing Wall Face (도심지 인접 굴착 시 굴착벽에 작용하는 횡방향 토압에 대한 연구)

  • Lee, Jin-Sun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.67-74
    • /
    • 2012
  • The arching effect of the active earth pressure acting on an excavation wall subjected to close excavation reduces lateral earth pressure acting on excavation wall. In this paper, the arching effect was estimated for varying width to excavation depth ratio and wall friction angle by analytical and numerical methods verified with centrifuge test results. The arching effect is significant when the width to excavation depth ratio and wall friction angle is decreased and increased, respectively. The analytical solution derived from the classical arching theory suggested by Handy(1985) shows good agreement with the numerical solution than the other solutions.