• 제목/요약/키워드: Arch concrete

검색결과 207건 처리시간 0.023초

철근콘크리트 휨부재의 사용성 모델 개발 (Development of Serviceability Model for RC Flexural Members)

  • 이기열;김장현;하태관;김대중;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.413-416
    • /
    • 2004
  • This paper describes a proposal for crack width and deflection in RC flexural members. Because the serviceability provisions of the current codes are mainly based on only empirical relationships developed from test result and effective moment of inertia, crack width and deflections are contrary to the actual values. Based on nonlinear bond characteristics, tension stiffening effect, arch action and effective concrete tensile area. Then an equation is developed for predicting crack width and deflection in flexural members. The predicted results shows that as proposed model employed, crack width and deflections are different from estimated by the current KCI, MC 90 and EC 2 provisons, and the values predicted are in good agreement with experimentally measured values.

  • PDF

Manual model updating of highway bridges under operational condition

  • Altunisik, Ahmet C.;Bayraktar, Alemdar
    • Smart Structures and Systems
    • /
    • 제19권1호
    • /
    • pp.39-46
    • /
    • 2017
  • Finite element model updating is very effective procedure to determine the uncertainty parameters in structural model and minimize the differences between experimentally and numerically identified dynamic characteristics. This procedure can be practiced with manual and automatic model updating procedures. The manual model updating involves manual changes of geometry and analyses parameters by trial and error, guided by engineering judgement. Besides, the automated updating is performed by constructing a series of loops based on optimization procedures. This paper addresses the ambient vibration based finite element model updating of long span reinforced concrete highway bridges using manual model updating procedure. Birecik Highway Bridge located on the $81^{st}km$ of Şanliurfa-Gaziantep state highway over Firat River in Turkey is selected as a case study. The structural carrier system of the bridge consists of two main parts: Arch and Beam Compartments. In this part of the paper, the arch compartment is investigated. Three dimensional finite element model of the arch compartment of the bridge is constructed using SAP2000 software to determine the dynamic characteristics, numerically. Operational Modal Analysis method is used to extract dynamic characteristics using Enhanced Frequency Domain Decomposition method. Numerically and experimentally identified dynamic characteristics are compared with each other and finite element model of the arch compartment of the bridge is updated manually by changing some uncertain parameters such as section properties, damages, boundary conditions and material properties to reduce the difference between the results. It is demonstrated that the ambient vibration measurements are enough to identify the most significant modes of long span highway bridges. Maximum differences between the natural frequencies are reduced averagely from %49.1 to %0.6 by model updating. Also, a good harmony is found between mode shapes after finite element model updating.

Shear strength of steel fiber reinforced concrete beams with stirrups

  • Campione, G.;La Mendola, L.;Papia, M.
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.107-136
    • /
    • 2006
  • The present paper proposes a semi-empirical analytical expression that is capable of determining the shear strength of reinforced concrete beams with longitudinal bars, in the presence of reinforcing fibers and transverse stirrups. The expression is based on an evaluation of the strength contribution of beam and arch actions and it makes it possible to take their interaction with the fibers into account. For the strength contribution of stirrups, the effective stress reached at beam failure was considered by introducing an effectiveness function. This function shows the share of beam action strength contribution on the global strength of the beam calculated including the effect of fibers. The expression is calibrated on the basis of experimental data available in literature referring to fibrous reinforced concrete beams with steel fibers and recently obtained by the authors. It can also include the following variables in the strength previsions: - geometrical ratio of longitudinal bars in tension; - shear span to depth ratio; - strength of materials and fiber characteristics; - size effects. Finally, some of the more recent analytical expressions that are capable of predicting the shear strength of fibrous concrete beams, also in the presence of stirrups, are mentioned and a comparison is made with experimental data and with the results obtained by the authors.

지반경계조건이 프리캐스트 아치구조물의 폭발저항성능 평가에 미치는 영향 (Effect of Ground Boundary Condition on Evaluation of Blast Resistance Performance of Precast Arch Structures)

  • 이정휘;최근기;김동석
    • 한국전산구조공학회논문집
    • /
    • 제32권5호
    • /
    • pp.287-296
    • /
    • 2019
  • 본 논문에서는 지반경계조건의 설정이 프리캐스트 아치구조물의 폭발저항성능 평가에 미치는 영향을 수치해석적 기법을 사용하여 파악하고자 하였다. 지반경계조건은 고정조건과 PML(perfectly matcher layer)을 이용한 경계조건의 두 가지로 적용하였으며, 폭발하중은 대상 구조물의 설계하중보다 큰 하중을 사용하여 경계조건의 영향을 명확히 비교할 수 있도록 하였다. 폭발압력의 분포 및 경로, 구조물에 발생하는 변위, 콘크리트의 파쇄여부, 콘크리트 및 철근의 응력을 비교 분석하였으며, PML을 적용하였을 때 지반 경계면에서 발생하는 반사파를 효과적으로 제거할 수 있음을 확인하였다. 또한, 이로 인해 구조물 기초부의 변위가 감소하는 것으로 나타났다. 하지만, 콘크리트의 파쇄여부, 콘크리트 및 철근에 발생하는 응력을 포함한 전반적인 구조물의 거동에는 뚜렷한 차이가 발생하지 않았다. 따라서 방호시설의 설계를 목적으로 폭발시뮬레이션을 수행하는 경우에는 지반경계조건에 고정조건을 적용하였을 때 안전측의 결과를 얻을 수 있으며, 해석시간이 단축되는 이점도 있으므로 이러한 면을 종합적으로 고려하여 지반경계조건을 고정조건으로 적용하는 것이 합리적이라고 판단된다.

Failure Modeling of Bridge Components Subjected to Blast Loading Part II: Estimation of the Capacity and Critical Charge

  • Quintero, Russ;Wei, Jun;Galati, Nestore;Nanni, Antonio
    • International Journal of Concrete Structures and Materials
    • /
    • 제1권1호
    • /
    • pp.29-36
    • /
    • 2007
  • The purpose of this paper is the assessment of the capacity of the reinforced concrete (RC) elements of an arch bridge when they are subjected to contact and near-contact explosive charges of various amounts, and the estimation of the critical charges for these components. The bridge considered is the Tenza Viaduct, a decommissioned structure south of Naples, Italy. Its primary elements, deck, piers and arches were analyzed. The evaluation was accomplished via numerical analyses that made possible to obtain the elements dynamic response when they are exposed to blast loading conditions. To evaluate the member's capacities, failure criteria for deck, piers and arches were proposed based on concrete damage parameters. Additionally, curves relating the explosive charge to the residual capacity and to damage level of the elements were also developed. The results of this work were taken into account to investigate the progressive collapse of the global structure.

CFTA거더의 선형거동 분석 및 안정성 평가 (Linear Behavior Analysis and Stability Assessment of CFTA Girder)

  • 정민철;이선애;공정식
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.271-274
    • /
    • 2009
  • 강관의 내부에 콘크리트를 충전한 콘크리트 충전 강관 구조(CFT 구조, Concrete Filled Steel Tubular Structure)는 강재와 콘크리트의 단점을 상호 보완하고, 장점을 극대화 할 수 있다는 이점 때문에 최근 실제 구조물의 시공에 적용하는 사례가 증가하고 있는 추세이다. 이와 같은 CFT 거더의 장점을 살리면서 CFT 거더보다 더 뛰어난 경제적, 구조적 효율성을 얻기 위해 기존의 CFT 구조에 아치 형식과 프리스트레스를 도입한 CFTA(Concrete Filled and Tied Tubular Arch) 거더에 관한 연구가 현재 진행중이다. 본 연구에서는 CFTA 거더의 현장 실험과의 비교를 위해 ABAQUS 6.5-1을 이용하여 CFTA 거더의 유한요소 해석을 수행하였고, 이를 바탕으로 구조물의 선형거동을 분석하였다. 또한 구조물의 위험도 분석을 위해 본 구조물의 가장 약점으로 지적되고 있는 외부로 노출되어 있는 긴장재의 차량 충돌에 의한 사고를 가정하여 이를 고려한 유한 요소 해석을 수행하여 CFTA 구조물의 동적 및 정적 안전성 평가를 수행하고 그 결과를 분석하였다.

  • PDF

모형 실험에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구 (Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Model Experiment)

  • 이대혁;김영근;이희근
    • 터널과지하공간
    • /
    • 제8권1호
    • /
    • pp.53-66
    • /
    • 1998
  • Considering the mechanical cracking in the concrete lining of tunnels occurring in relatively short period of time after the construction, there is a need for the study on the mechanical behavior and the cracking characteristics of double lining support system(shotcrete and concrete lining). For the proposed study, downscaled lining models of Kyung-Bu High Speed Railway tunnels were tested. Most longitudinal cracks at about 93 percentage developed within 30 arch degree from the vault. Cracking load was about 30 percentage of the failure load and the deflection under the cracking load was 10 percentage of the deflection under the failure load. The overbreak around the vault contributed to the reduction of the capacity for cracking and failure by the percentage greater than the reduced effective depth. Of several rock block types considered in this research, the triangular block was the most critical, and the right triangular block under eccentric load was secondly critical for the stability of the tunnel lining system. The dimensionless support reaction curves were derived from the experimental results for single and double lining. The general equation to compute the designed flexural moment was modified.

  • PDF

RC 보에서 하중형태에 따른 내부아치궤적 변화에 대한 연구 (Variation of Internal arch Trajectory with Type of Load in RC Beams)

  • 오세왕;박대성;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.483-488
    • /
    • 2001
  • The RC beams subjected to bending and shear are an important substructure. After flexural cracking, the internal stress state in the beam could not be explained by the classical beam theory. In this study the internal force state factor is introduced to explain the stress state change in the RC beams. The internal force state factor of uniform load was expanded by superposition method using infernal force state factor of point load. As the load types change, the operator that would be calculated the internal force state factor was proposed.

  • PDF

소성 변형을 고려한 전단 지배 부재의 스트럿-타이 모델 (The Strut-and-Tie Models for Shear Dominant R/C Members considering Plastic Deformations)

  • 홍성걸;장상기
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.145-152
    • /
    • 2005
  • This paper presents a deformable strut-and-tie model of determining the shear strengths and ultimate deformations of the shear-dominant reinforced concrete members. The proposed model originates from the strut-and-tie model concept and satisfies equilibrium, compatibility, constitutive laws, and the geometric conditions of shear deformation. This study attempts to apply deformation patterns to strut-and-tie models. The yielding of flexural reinforcements determines yielding states and the ultimate states of reinforced concrete coupling beam are defined as the ultimate compressive strain of struts and the degradation of compressive strength due to principal tensile strain of struts. The validity and accuracy of the proposed model is then tested against available experimental data. The parameters reviewed include the ratios of truss action and arch action, the reinforcement ratios, and the shear span-depth ratio. It is expected that this model can be applied to displacement-based design methods.

  • PDF

Shear behavior and shear capacity prediction of precast concrete-encased steel beams

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Liu, Yaping
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.261-272
    • /
    • 2020
  • A novel precast concrete-encased steel composite beam, which can be abbreviated as PCES beam, is introduced in this paper. In order to investigate the shear behavior of this PCES beam, a test of eight full-scale PCES beam specimens was carried out, in which the specimens were subjected to positive bending moment or negative bending moment, respectively. The factors which affected the shear behavior, such as the shear span-to-depth aspect ratio and the existence of concrete flange, were taken into account. During the test, the load-deflection curves of the test specimens were recorded, while the crack propagation patterns together with the failure patterns were observed as well. From the test results, it could be concluded that the tested PCES beams could all exhibit ductile shear behavior, and the innovative shear connectors between the precast concrete and cast-in-place concrete, namely the precast concrete transverse diaphragms, were verified to be effective. Then, based on the shear deformation compatibility, a theoretical model for predicting the shear capacity of the proposed PCES beams was put forward and verified to be valid with the good agreement of the shear capacities calculated using the proposed method and those from the experiments. Finally, in order to facilitate the preliminary design in practical applications, a simplified calculation method for predicting the shear capacity of the proposed PCES beams was also put forward and validated using available test results.