• Title/Summary/Keyword: Arc-jet

Search Result 49, Processing Time 0.022 seconds

PROCESS OPTIMIZATION OF METHANE REFORMING IN ARC JET (아크젯 플라즈마에서의 메탄개질의 최적화)

  • Hwang, Na-Kyung;Lee, Dae-Hoon;Song, Young-Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.266-271
    • /
    • 2006
  • Characteristic of partial oxidation of methane using arc-jet plasma by AC power is investigated. Arc-jet reactor used in this work is slightly modified from typical arc jet reactor so that it can make and sustain stable state of plasma. Methane conversion, selectivity of chemicals such as hydrogen and hydrocarbon materials in the product are analyzed. Parametric approach on the performance of the reactor or detail on the partial oxidation process is carried with $O_2/C$ ratio as parameter. In addition to the results, SED and arc length is changed to understand the effect of current-voltage correlation on the reforming performance and relative role of thermal process.

  • PDF

A Study on the Influence of Coaxial Parallel Magnetic Field upon Plasma Jet (Plasma Jet의 동축평행 자계에 의한 영향에 관한 연구 ( 1 ))

  • 전춘생
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.57-69
    • /
    • 1973
  • The aim of this study was to investigate the behaviors of plasma jet under coaxial magnetic field in paralled with it for controlling optical characteristics and input power of plasma jet without impurity and instability of arc plasma column. Because the discharge characteristics of plasma jet were so distinctively different according to the existence or non-existence of magnetic field, the input power, luminous intensity of plasma jet and thermal efficiency were comparatively studied in respect of such variables as arc current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle, with the use of several materials which were different in diameter and length of nozzel. The results were as follows; 1) The voltage tends to show a drooping characteristic at law current and then rises gradually. The luminous intensity of plasma jet increases exponentially with arc current. 2) Arc voltage increases and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity tends to decrease gradually as gap of electrode increases. 3) Arc voltage and luminous intensity increase in accordance with the quantity of argon flow. 4) At first step, arc voltage increases to maximum value with the growth of flux density and then tends to show a gradual decrease. Luminous intensity decreases with the growth flux density. 5) Arc voltage decreases as the constriction length of nozzle increases, maximum decrease is shown at the constriction length of 20(mm) and it increases beyond that value. The luminous intensity decreases as the constriction length grows. 6) Arc voltage and luminous in tensity increase with the growth of diameters of nozzle. 7) Thermal efficiency has values between 50% and 75%, being influenced by arc current, the quantity of argon flow, flux density, the length of electrode gap and the constriction length of nozzle.

  • PDF

Investigation on The Role of Arc-jet Plasma in Methane Reforming (메탄개질에서의 아크젯 플라즈마의 역할)

  • Hwang, Na-Kyung;Lee, Dae-Hoon;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.3
    • /
    • pp.1-7
    • /
    • 2006
  • A reaction mechanism of methane partial oxidation, which consists of thermal and plasma chemistry reaction pathways, has been investigated using with an arc-jet reactor. The reaction zone of the arc-jet reactor is spatially separated into thermal and non-thermal plasma zone. Methane conversion rates, selectivity of $H_2$ and $C_2$ chemicals in each zone are obtained, which reveals clearly different characteristics of reaction pathways depending on the temperature conditions. The conversion rates obtained in thermal plasma zone is higher than those in non-thermal plasma zone. The selectivity, however, obtained in non-thermal plasma zone is significantly higher than those in thermal plasma zone. Further parametric study on $O_2/C$ ratio, arc length and SED shows that the present process is mainly governed by thermal chemistry pathways.

  • PDF

A Study on the Influence Coaxial Parallel Magnetic Field upon Plasma Jet (II) (Plasma Jet의 동축평행자계에 의한 영향에 관한 연구 2)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.22 no.5
    • /
    • pp.19-32
    • /
    • 1973
  • This paper treats with some of plasma jet behaviors under magnetic field for the purpose of controlling important characteristics of plasma jet in the practices of material manufacturings. Under the existence and non-existence of magnetic field, the pressure distribution, flame length, stability and noise of plasma jet are comparatively evaluated in respect of such parameters as are current, gap of electrode, quantity of argon flow, magnetic flux density, diameter and length of nozzle. The results are as follows: 1) the pressure, the length and the noise of plasma jet rise gradually with the increase of are current, and have high values under identical arc current as the diameter of nozzle increases, but reverse phenomenon tends to appear in the noise. 2) The pressure, the flame length and the noise increase with the increased quantity of argon flow, and the rising slope of noise is particularly steep. Under magnetic field, the quantity of argon flow in respect of flame length has the critical value of 80(cfh). 3) The pressure and length of flame decrease with small gradient value as the length of gap increases, but the noise tends to grow according to the increase of nozzle diameter. 4) The pressure and the length of jet flame decrease inversly with the increase of magnetic flux density, which have one critical value in the 100 amps of arc current and two values in 50 amps. The pressure of jet flame can be below atomospher pressure in strong magnetic field. 5) "The constriction length of nozzle has respectively the critical value of 6(mm) for pressure and 23(mm) for the length of flame. 6) Fluctuations in the wave form of voltage become greater with the increase of argon flow and magnetic flux density, but tends to decrease as arc current increases, having the frequency range of 3-8KHz. The wave form of noise changes almost in parallel with that of voltage and its changing value increases with argon flow, arc current and magnetic flux density, having the freuqency range of 6-8KHz. The fluctuation of jet presurre is reduced with the increase of argon flow and magnetic flux density and grows with arc current.rent.

  • PDF

A Study on the Operating Characteristics of Commercial Frequency Plasma Jet Torch (상용 주파수 (60Hz) Plasma Jet Torch의 동작특성에 관한 연구)

  • 전춘생;정재웅
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.75-85
    • /
    • 1975
  • In order to develop the commercial frequency (60Hz) plasma torch of small capacity for material cutting, welding and other industrial heating, the A.C plasma jet generator of non-transfered type is made domestically and the electrode configurations of plasma torch are composed of two kinds of electrodes W-C and W-Cu, combined by thermal emission and field emission electrode materials. In this paper, the characteristics of input power, thermal efficiency, electrode consumption, the flame and forms of arc voltage and arc current for A.C plasma torch are investigated in relation to such variables as arc current, argon flow and magnetic field intensity to obtain the basic design data necessary to A.C plasma jet generator. The result are as follows; (1)The input power, thermal efficiency and electrode consumption are influenced greatly by argon flow, magnetic field intensity and nozzle materials. (2)A.C arc voltage and current are non-symmetrial, involving D.C Component. Due to this current of D.C Component, transformer core is saturated and a large abnormal current flows into the primary winding coil. In order to prevent this abnormal current flow, a condenser must be connected in series to the main discharge circuit. (3)The stability and sharpness of jet flame are improved more in the torch of W-C electrode configuration than in the torch of W-Cu electrode configuration.

  • PDF

Determination of Enthalpy in the 150kW Arc-Jet (150kW 아크제트 유동의 엔탈피 결정)

  • Na, Jae Jeong;Lee, Jeong Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.547-551
    • /
    • 2013
  • Mass averaged and core enthalpy in the arc jet flow are obtained experimentally. The experiment is made for the 150kW Huels type arc-jet applying the test condition for the research of gasturbine engine injection cooling technique. The mass averaged enthalpy value determined by the sonic throat method is 5.5MJ/kg. The core enthalpy value determined by the heat transfer rate method is 14.3MJ/kg. Based on result of experiment, the ratio of the core to mass averaged enthalpies is 2.6.

Performance Characteristics of a High-Speed Jet Produced by a Pulsed-Arc Spark Jet Plasma Actuator (펄스 아크 스파크 제트 플라즈마 구동기에 의해 발생된 고속 제트의 효율적 운전 성능 특성에 관한 연구)

  • Kim, Young Sun;Shin, Jichul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.907-913
    • /
    • 2017
  • The performance of a spark jet driven by pulsed-arc plasma was investigated experimentally for various energy input. A high-speed jet (about 330 m/s) was obtained by rapid gas heating produced by 37 mJ of deposited energy per pulse. The peak velocity and penetration distance of the jet were proportional to the deposited power and the deposited energy per pulse, respectively. A smaller orifice diameter produces a higher velocity jet at lower energy levels. For the same deposited energy, higher-current pulses produce a higher jet velocity than higher-pulse-width pulses. A total deposited energy of about 10 mJ per pulse with a pulse duration of about $10{\mu}s$ was found to be the optimum for energy- efficient operation.

The Experimental Research On The Electrical Characteristics For The Ignition Of Plasma Jet Using The Advance Discharge Of High Frequency Voltage With Attenuation (감쇠파 고주파전압의 선행방전을 이용한 Plasma jet의 전기적 기동특성에 대한 실험적 연구)

  • Choon Saing Jhoun
    • 전기의세계
    • /
    • v.21 no.4
    • /
    • pp.27-38
    • /
    • 1972
  • This paper discusses the characteristics about the ignition of D.C. main discharge is a plasma jet generator, manufactured for trial as non-transferred type, when the electrical energy appropriate to the ignition is supplied to the gap between the electrodes by using advance discharge of attenuating high frequency voltage generated by a high frequency oscillator with mercury spark gap. These characteristics are under the influences of (a) the length of mercury gap in high frequency oscillator and the quantity of hydrogen flow supplied to it, (b) the condenser capacity of the high frequency oscillator circuit, (c) the length of plasma jet torch in D.C. main discharge circuit and the quantity of argon flow supplied to it, (d) the circuit constants of D.C. main discharge circuit. The results for these characteristics, obtained by this research, are considered to be helpful to the designs for the ignition of a plasma jet as well as the welding arc stabilizer by high frequency discharge and the high frequency arc welder.

  • PDF

Insights on the rotation measure of the M87 jet on arc-second scales

  • Algaba, Juan-Carlos;Asada, Keiichi;Nakamura, Masanori
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.73.2-73.2
    • /
    • 2014
  • We investigate the rotation measure (RM) of the nearby low luminosity AGN M87 by using archival polarimetric VLA data at 8, 15, 22 and 43 GHz. For the first time, the RM properties of its jet are resolved at at arc-second scales. The distribution of the RM appears to be a gaussian with a mean value of ~200rad/m2 and the power spectrum follows a power law with index -2.5. A simple Kolmogorov model assuming a random turbulent magnetic fields extrinsic to the jet appears not to be adequate to explain the observed RM power spectra. On the other hand, underlying RM gradients possibly connected with the jet could be a possible interpretation.

  • PDF

Electrohydrodynamic Continuous Jet Printing of Ni Ink for Crystalline Silicon Solar Cells (전기 수력학 인쇄공정을 이용한 실리콘 태양전지 전극용 Ni 잉크 제조 및 인쇄 공정 연구)

  • Lee, Youngwoo;Kim, Jihoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.9
    • /
    • pp.593-597
    • /
    • 2015
  • Ni ink for electrohydrodynamic (EHD) continuous jet printing has been developed by using Ni nanoparticles mixed with conhesiveness provider. EHD continuous jet printing was used in order to realize $20{\mu}m$ pattern width. Ink stability was investigated by using Turbi-scan which monitors agglomeration and precipitation of nanoparticles in the ink for three days. The Turbi-scan results showed that the formulated Ni ink had been stable for 3 days without any indication of precipitation across the entire ink. Antireflection coating (ARC) layer in crystalline solar cell wafers was removed by laser ablation technique leading to the formation of 84 grooves where the Ni ink was printed by EHD continuous jet printing. The printability and microstructure of EHD-jet-printed Ni lines were investigated by using optical and electron microscopes. 84 Ni lines with the width less than $20{\mu}m$ were successfully printed by one-time printing without any misalignment and fill the laser-ablated ARC grooves.