Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.9.593

Electrohydrodynamic Continuous Jet Printing of Ni Ink for Crystalline Silicon Solar Cells  

Lee, Youngwoo (Division of Advanced Materials Engineering, Kongju National University)
Kim, Jihoon (Division of Advanced Materials Engineering, Kongju National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.9, 2015 , pp. 593-597 More about this Journal
Abstract
Ni ink for electrohydrodynamic (EHD) continuous jet printing has been developed by using Ni nanoparticles mixed with conhesiveness provider. EHD continuous jet printing was used in order to realize $20{\mu}m$ pattern width. Ink stability was investigated by using Turbi-scan which monitors agglomeration and precipitation of nanoparticles in the ink for three days. The Turbi-scan results showed that the formulated Ni ink had been stable for 3 days without any indication of precipitation across the entire ink. Antireflection coating (ARC) layer in crystalline solar cell wafers was removed by laser ablation technique leading to the formation of 84 grooves where the Ni ink was printed by EHD continuous jet printing. The printability and microstructure of EHD-jet-printed Ni lines were investigated by using optical and electron microscopes. 84 Ni lines with the width less than $20{\mu}m$ were successfully printed by one-time printing without any misalignment and fill the laser-ablated ARC grooves.
Keywords
Ni ink; Electrohydrodynamic printing; Continuous jet; Crystalline Si solar cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Jaworek, J. Mater. Sci., 42, 266 (2007). [DOI: http://dx.doi.org/10.1007/s10853-006-0842-9]   DOI
2 P. R. Chiarot, P. Sullivan, and R. B. Mrad, J. Microelectromech. Syst., 20, 1241 (2011). [DOI: http://dx.doi.org/10.1109/JMEMS.2011.2168810]   DOI
3 M. Singh, H. M. Haverinen, P. Dhagat, and G. E. Jabbour, Adv. Mater., 22, 673 (2010). [DOI: http://dx.doi.org/10.1002/adma.200901141]   DOI
4 H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, Appl. Phys. Lett., 94, 073108 (2009). [DOI: http://dx.doi.org/10.1063/1.3085771]   DOI
5 H. M. Haverinen, R. A. Myllyla, and G. E. Jabbour, J. Disp. Technol., 6, 87 (2010). [DOI: http://dx.doi.org/10.1109/JDT.2009.2039019]   DOI
6 H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science, 290, 2123 (2000). [DOI: http://dx.doi.org/10.1126/science.290.5499.2123]   DOI
7 R. A. Stree, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, Mater. Today, 9, 32 (2006). [DOI: http://dx.doi.org/10.1016/S1369-7021(06)71445-6]   DOI
8 T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, Adv. Mater., 13, 1601 (2001). [DOI: http://dx.doi.org/10.1002/1521-4095(200111)13:21<1601::AID-ADMA1601>3.0.CO;2-X]   DOI
9 J. Bharathan and Y. Yang, Appl. Phys. Lett., 72, 2660 (1998). [DOI: http://dx.doi.org/10.1063/1.121090]   DOI
10 T. R. Hebner, C. C. Marcy, D. Marcy, M. H. Lu, and J. C. Sturm, Appl. Phys. Lett., 72, 519 (1998). [DOI: http://dx.doi.org/10.1063/1.120807]   DOI
11 Y. Jang, J. Kim, and D. Byun, J. Phys. D, 46, 155103 (2013). [DOI: http://dx.doi.org/10.1088/0022-3727/46/15/155103]   DOI